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Abstract

This paper identifies a labor channel of corporate exposure to climate risk, measured
using firms’ reliance on workers exposed to high temperatures while performing job
duties. Consistent with the physical risk mechanism, unexpected extreme heat sig-
nificantly reduces firm-level and plant-level labor productivity, making labor less ef-
ficient than capital as a production input. Firms adapt to these disruptions by shifting
toward more capital-intensive production functions, i.e., higher capital-labor ratios.
Firms further respond by investing in robotics-related human capital and develop-
ing automation-related technology. At the macro level, climate change impedes the
growth of high-exposure industries in hot areas.
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“...extreme heat is now the leading weather-related killer in America. Rising temperatures pose an
imminent threat to millions of American workers exposed to the elements..."

- Joe Biden, Sep 2021

“High heat can be a big problem for the nation’s workers, not just farmworkers and construction
workers, but delivery workers, utility workers, landscaping workers, and warehouse workers."

- Steven Greenhouse, Nieman Reports, Jan 2023

1 Introduction

High temperatures precipitated by climate change pose significant health risks to work-

ers, especially those working in environments without climate controls (e.g., Luber and

McGeehin, 2008; Mora et al., 2017). For instance, Park et al. (2021) estimate that high

temperatures caused approximately 360,000 worker injuries in California from 2001 to

2018.1,2 Notably, such temperature threats can affect a variety of economic outcomes; ex-

isting studies have highlighted the negative impact on aggregated output and income

(e.g., Dell et al., 2009, 2012; Burke et al., 2015; Behrer and Park, 2017). These findings are

further corroborated by micro-level evidence demonstrating that extreme heat reduces

individuals’ productivity by impairing physical and cognitive abilities (e.g., Heyes and

Saberian, 2019; LoPalo, 2023).

While the literature on the impact of extreme heat on economic activity is extensive,

three gaps in particular remain. First, existing evidence on the impact of high tempera-

tures on corporate performance is limited and mixed. For example, Addoum et al. (2020)

find no evidence that high temperatures affect corporate sales or labor productivity. In

contrast, Pankratz et al. (2023) find that high temperatures reduce firm performance. Ad-

doum et al. (2023) further document bi-directional effects of temperatures on firm sales -
1A report by the Atlantic Council estimates that extreme heat explains around 120,000 occupational injuries
in the U.S. per year, and this number could increase nearly fourfold to almost 450,000 without adaptation
measures taken. Further, over 8,500 deaths annually are associated with average temperatures above 90°F
(32.2◦C), which is projected to increase nearly sevenfold to 59,000 by 2050. See “Extreme Heat: The Economic
and Social Consequences for the United States.”

2In Internet Appendix B, I present several pieces of evidence that underscore significant heat risks in the
workplace, sourced from regulators, nonprofit organizations, and media outlets.
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some get hurt while others benefit. Second, although the above studies frequently cite

labor productivity as an important channel, direct evidence examining the channel is

scarce.3 Third, while climate change brings numerous challenges, little work has been

done to understand firms’ adaptation actions (Fankhauser, 2017). Answering these ques-

tions is crucial as it represents an essential step in guiding the business community’s

adaptation to a warmer era.

This paper aims to bridge these gaps in three steps. First, I introduce a method to

quantify a labor channel of firms’ exposure to climate change, utilizing firms’ reliance on

workers exposed to high temperatures while performing job duties. Second, through the

channel, I estimate the causal effects of unexpected high temperatures on firm- and plant-

level labor productivity. My analysis shows that labor productivity of high-exposure

firms (at the 75th percentile)4 drops by 1.9% following heat shocks. Third, I investigate

firms’ adaptation to extreme heat via automation. My reasoning is that high temperatures

reduce the efficiency of workers relative to capital assets (i.e., computers, equipment, ma-

chines, robots, and sensors) as production inputs. Consequently, firms will use more

automated capital assets and less labor in production, leading to higher capital-labor ra-

tios. In line with this hypothesis, I find that high-exposure firms increase capital-labor

ratios by 1.6%, invest 32.7% more in robotics-related human capital, and are 4.0% more

likely to file automation-related patents after unexpected high temperatures.

Crucial to my empirical investigations is the measurement of corporate exposure to

climate risk from a labor perspective. To this end, I obtain data on occupations needed in

each industry from the Occupational Employment and Wage Statistics (OEWS) and each

occupation’s exposure to changing climates from the Occupational Information Network

(O*NET) program. The exposure is based on how often a job requires working outdoors

3Addoum et al. (2023) find strong support for the consumer demand channel and little evidence for the labor
productivity channel.

4For simplicity, hereafter, I use “high-exposure firms" to refer to firms with labor exposure at the 75th percentile
when discussing the economic significance.
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to fulfill duties.5 I next construct an index of climate exposure at the four-digit NAICS

(NAICS4) level, calculated as the employment-weighted average of all occupations’ out-

door exposures. Based on this index, I create a rank variable of labor exposure to climate

risk, Labor Exposure, ranging from 1 to 20, with 20 indicating the highest exposure. I

further aggregate the exposure measure at the firm level, utilizing plant-level data on

employment across industries provided by Your Economy Time Series (YTS).

To quantify temperature fluctuations across locations and time, I obtain daily grid-

level (4×4 km) temperature data for the continental U.S. from the PRISM Climate Group,

spanning 1981 to 2022. I then construct a location- and time-specific measure of heat shocks

for each county and year. Specifically, heat shocks are defined as significant upward de-

viations from the county’s historical temperature distributions. I further aggregate the

measure at the firm level using firms’ geographic footprints across counties from the YTS

data. By construction, this measure captures deviations from the means of county- and

time-specific historical temperatures and thus can be regarded as random draws from the

distribution of temperatures within and across counties (Auffhammer et al., 2013; Dell

et al., 2014). Therefore, for any given firm, these shocks are plausibly exogenous.

With the measures, I first investigate the causal effects of high temperatures on labor

productivity at firm and plant levels over the period 1999 - 2019. Labor productivity is

measured as the natural logarithm of sales per employee, as in, for example, Tate and

Yang (2015) and Bena et al. (2022). Consistent with Addoum et al. (2020), the population

average effect of high temperatures on labor productivity is zero. However, firms and

plants with substantial heat exposures through the labor channel experience significant

reductions in labor productivity following heat shocks. The findings remain robust after

an extensive set of fixed effects to control for firm-, county-, and industry-level hetero-

5The Bureau of Labor Statistics (BLS) estimates that 32.9% of U.S. workers had regular outdoor exposure in
2022. See “32.9 percent of employees had regular outdoor exposure in 2022." Based on the BLS employment data,
as of Oct 2023, the U.S. has around 162 million employed civilian labor force. This suggests that 53.3 million
American workers are regularly exposed to high temperatures while performing job duties.
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geneities, such as county-by-year, industry-by-year, and county-by-industry fixed effects.

The effects are also economically significant; high-exposure firms experience a 1.9% drop

in labor productivity following heat shocks. Collectively, these evidence suggests that ex-

treme heat reduces the productivity of exposed workers only and, consequently a subset

of firms that employ these workers in the economy.

Given the negative impact of extreme heat on labor productivity, an inevitable ques-

tion arises: What actions are firms taking or planning to take to mitigate the challenges?

One potential strategy is to limit the use of heat-exposed workers by automating their

tasks, i.e., more utilization of capital assets in production,6 assuming that capital per-

formance is less affected by high temperatures.7 However, the implementation of such

adaptations is potentially costly, time-consuming, and challenging. For instance, firing

workers displaced by automation can be onerous, while investing in capital assets de-

mands substantial financial resources. Consequently, firms might not instantly resort to

automation after a one-time heat shock. Instead, they may make gradual adjustments in

production inputs over the years after sensing medium-term or long-term temperature

threats. To capture this nuance, I redesign my empirical strategy to study firms’ response

to medium-term heat shocks, i.e., abnormal temperatures in the past three years com-

pared to historical distributions.

To test the conjecture on adaptation through automation, I examine firms’ capital uti-

lization in production, a fundamental aspect of automation (e.g., Brozen, 1957; Acemoglu

and Restrepo, 2019), measured as the natural logarithm of total capital - a firm’s prop-

erty, plant, and equipment plus its depreciation-adjusted past R&D expenses. Besides,

I also use the employment-scaled total capital as the dependent variable, i.e., capital-

6Notably, these capital assets are not necessarily “green," nor do they necessarily contain climate-related
technology. As long as they can be used to replace heat-exposed workers and function effectively under
high temperatures, firms may utilize them as substitutes for workers.

7I discuss the impact of high temperatures on the performance of capital assets and alternative adaptation
strategies in Section 6.1.4 “Robustness and Discussions."
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labor ratio, which captures the use of capital relative to labor in the production process.

I find no effects of high temperatures on the average firm’s capital utilization in produc-

tion. However, for high-exposure firms, the effects are positive and statistically significant

and hold after including firm, county-by-year, county-by-industry, and industry-by-year

fixed effects. The economic magnitudes are also large. After a heat shock, high-exposure

firms increase their capital-labor ratios by 1.6%. These evidence implies that heat shocks

prompt firms to enhance automation to ensure a more robust production system.

Additionally, I explore cross-sectional heterogeneities in firms’ capital utilization in

response to high heat challenges. I first find that heat shocks positively affect capital-labor

ratios of only high-exposure firms that operate in counties with significant projected long-

term temperature increases. This evidence supports the prediction that firms respond

only to temperature threats that are likely to become more severe and frequent as climate

change intensifies. Second, consistent with the notion that labor unions increase firms’

operating leverage (e.g., Chen et al., 2011), high-exposure firms in industries with higher

unionization rates are more incentivized to increase capital utilization. Last, I examine the

role of labor skills. In line with previous research documenting that low-skilled tasks are

easier to automate (Graetz and Michaels, 2018), I find that heat shocks significantly affect

the capital-labor ratios only in firms that predominantly employ low-skilled workers.

Next, I examine firms’ employment practices in response to high temperatures, given

that labor reduction is both an impetus for and a consequence of increased automation.

To do so, ideally I would analyze a firm’s hiring and firing of workers based on tempera-

ture exposures and skill levels, as a decline in heat-exposed workers could coincide with

a rise in less-exposed and skilled workers capable of managing automated systems. Un-

fortunately, such occupational information is unavailable in Compustat and YTS, so my

analysis focuses only on total employment at the firm and plant levels. This approach

comes with the caveat that net changes in total employment may be small and thus diffi-

cult to detect. Reflecting this notion, my analysis reveals a limited impact of heat shocks
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on firm-level or plant-level total employment, regardless of labor exposures. However,

employment in small plants exhibits a strong and negative response to high temperatures.

In particular, plants with heat exposure at the 75th percentile experience a 0.53% reduc-

tion in employment, implying that small plants may have limited adaptation strategies

beyond automation, or that firms prioritize downsizing the labor force in small plants in

response to temperature threats. These findings lend partial support to my hypothesis

that firms adapt to heat challenges by substituting capital for labor. Moreover, in line

with my prediction regarding new hires, high-exposure firms are more likely to advertise

job openings requiring robotics-related skills. This evidence complements the findings on

capital utilization and provides further support for the automation hypothesis.

I further investigate firms’ innovation of automation-related technology in the adap-

tation process, given the importance of technological advancement in shaping today’s

capital-intensive economy (Karabarbounis and Neiman, 2014). As climate change increas-

ingly pushes firms toward automation, those with innovation abilities and efficiency may

spend more effort innovating machines and equipment to reduce their reliance on la-

bor. Utilizing the classification of automation-related patents from Mann and Püttmann

(2023), I find that high-exposure firms are more likely to develop automation technol-

ogy after heat shocks. The probability of filling an automation patent increases by 4.0%

for high-exposure firms. Taken together, the findings on capital utilization, employment

practices, and automation technology provide consistent evidence supporting the hy-

pothesis that firms adopt more capital-intensive production functions in response to es-

calating labor risks associated with high temperatures.

In final analysis, I discuss the broad implications of firms’ adaptations to climate

change through automation. I find that firms with a higher degree of automation are

more resilient to heat shocks, as evidenced by the limited impact of heat shocks on labor

productivity in firms with high capital-labor ratios. This finding supports the hypoth-

esis that automation is an effective adaptation strategy for meeting the labor challenges
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posed by climate change. Moreover, I find that industries with workers highly exposed to

high temperatures grow more slowly than their low-exposure counterparts in hot areas,

reinforcing the plant-level findings that high temperatures contribute to job losses.

2 Related Literature

2.1 The Economic Outcomes of Climate Change

Researchers have long studied the relation between climate change and economic out-

comes (e.g., Dell et al., 2009, 2012, 2014; Burke et al., 2015). Prior research on the impact

of extreme heat on labor participation and productivity primarily focuses on macro-level

economic output such as GDP and income (e.g., Dell et al., 2009, 2012; Deryugina and

Hsiang, 2014); firms and plants in a narrow set of industries, such as agriculture and

manufacturing (e.g., Lesk et al., 2016; Somanathan et al., 2021); and specific groups of in-

dividuals such as students and interviewers (Park et al., 2020; LoPalo, 2023). This paper

both complements and extends the existing literature; rather than limiting the focus to

specific sectors, I demonstrate the widespread impact of high heat on labor efficiency and

productivity across the entire U.S. economy.

2.2 Climate Finance

Recent research in financial economics extensively explores the implications of climate

change for the financial market and firms, with a focus on quantifying the effects of cli-

mate risks on prices of different assets (e.g., Bernstein et al., 2019; Hong et al., 2020; Choi

et al., 2020; Bolton and Kacperczyk, 2021; Giglio et al., 2021; Ilhan et al., 2021). However,

a gap in the literature remains on how climate change, particularly high temperatures, af-

fects firms’ human capital. This paper fills the void by proposing an approach to quantify

firms’ exposure to climate change from a labor perspective, which shares similar spirits

with prior measures of routine tasks and labor skills (Autor and Dorn, 2013; Ghaly et al.,

2017) and the climate exposure measure in Xiao (2023b). In this regard, this paper con-

tributes to prior studies that measure firms’ climate exposures from various perspectives,
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such as asset exposure to seal level rise, carbon emissions, and financial disclosures (e.g.,

Bernstein et al., 2019; Li et al., 2020; Sautner et al., 2023; Bolton and Kacperczyk, 2021).8

Then, with the measure, I investigate the physical risk mechanism by examining how

high temperatures affect labor productivity at both firm and plant levels, an area in which

existing evidence is mixed. For example, Addoum et al. (2020) find no evidence that high

temperatures affect sales or labor productivity of U.S. firms and plants. Their follow-up

work documents bi-directional effects of temperatures - some firms get hurt while others

benefit (Addoum et al., 2023). In contrast, other works show that increased exposures to

high temperatures reduce firms’ operating performance (Custodio et al., 2022; Pankratz

et al., 2023). The negative effects also transmit along supply chains to firms’ customers

(Pankratz and Schiller, 2023). My study advances these discussions in two main aspects.

First, my research provides evidence that extreme heat does reduce labor productivity in

U.S. firms and plants, but this effect is observed only in those with significant temper-

ature exposures through the labor channel. Second, while the above studies frequently

cite labor productivity as an important channel, direct evidence identifying the channel is

scarce. My research offers direct evidence quantifying the significance of the labor chan-

nel in assessing the impact of high temperatures on corporate labor productivity.

2.3 Adaptation to Climate Change

Another strand of literature explores adaptation strategies economic agents exploit to ad-

dress climate risks (e.g., Fankhauser, 2017; Behrer and Park, 2017; Lai et al., 2023). Despite

comprehensive discussions from the perspectives of agriculture, bioscience, economics,

8By construction, this measure is different from the classification of heat-sensitive industries in Graff Zivin
and Neidell (2014), which classifies agriculture, forestry, fishing, hunting, construction, mining, manufac-
turing, utilities, and transportation as heat-sensitive. First, this measure primarily focuses on heat induced
by climate change, while theirs includes heat generated by both weather and production processes, such
as heat from steelmaking Second, my measure also captures heat exposures in service industries. Last, my
measure highlights large heterogeneities in workers’ temperature exposures within and across sectors, al-
lowing for more thorough analyses. See Internet Appendix C for a detailed discussion of the distribution
of high-exposure occupations and industries across sectors, labor skill levels, and counties.
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and public policy, analyses of adaptation behavior within the business sector are limited,

with a few exceptions. For instance, Somanathan et al. (2021) show that climate controls,

such as air conditioning, can eliminate plant-level productivity declines triggered by high

heat, while Heyes and Saberian (2019) document limited effects. However, these studies

focus primarily on indoor environments where climate controls can be implemented, as

opposed to outdoor settings, in which doing so could be costly or impossible (Dillender,

2021). Additionally, Pankratz et al. (2023) show that firms manage temperature threats

through supply chains. In contrast, I explore automation as a potential adaptation strat-

egy for firms to mitigate temperature threats to workers, and find that firms increase

automation after heat shocks. Consequently, this paper echoes the call for more research

on adaptation to climate change (Fankhauser, 2017). A recent working paper by Xiao

(2023a) examines firms’ disclosures of automation-related investments in response to ex-

treme heat. My paper differs by focusing on changes in firms’ production functions and

related practices on capital assets, employment, and automation technology, and further

investigating the broad implications for firm resilience and industry dynamics.

2.4 Labor Economics and Finance

This paper also adds to the literature on labor economics and finance that examine the

micro-foundations of production functions (e.g., Brozen, 1957; Karabarbounis and Neiman,

2014; Acemoglu and Restrepo, 2019, 2020; Bena et al., 2022). A fundamental question is

what contributes to the decline of the labor share and the rise of automation over the past

several decades. This paper proposes a new force driving the increase in labor costs and

the shift to a capital-intensive economy: high temperatures induced by climate change.

In response to temperature challenges, firms resort to automation.
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3 Conceptual Framework

3.1 Climate Change, Health Risk, and Labor Efficiency in Production

Climate risks can be classified into two types - physical and transition risks (Giglio et al.,

2021; Stroebel and Wurgler, 2021).9 Although extreme heat presents both physical and

transition risks to firms, this paper primarily focuses on the physical risk mechanism and

examines the negative impact of high temperatures on labor productivity.10

Exposure to extreme heat can cause a range of heat-related illnesses, such as heat

cramps, heat exhaustion, and heat stroke (Luber and McGeehin, 2008; Mora et al., 2017).

As global warming intensifies, the frequency and severity of high temperatures will in-

crease substantially, presenting severe threats to workers’ health (Dillender, 2021; Park

et al., 2021), which will impair their physical and cognitive abilities (Heyes and Saberian,

2019; Park et al., 2020). Deteriorating physical and cognitive performance will translate

into reduced productivity (Chen and Yang, 2019; Somanathan et al., 2021; LoPalo, 2023).

Importantly, even the world’s wealthiest economy is subject to material heat-related pro-

ductivity losses (Deryugina and Hsiang, 2014; Burke et al., 2015; Behrer and Park, 2017).11

Studies also show that exposed workers reduce working hours during hot days, im-

plying a contraction in labor supply (Graff Zivin and Neidell, 2014; Dillender, 2021; So-

manathan et al., 2021). For example, Graff Zivin and Neidell (2014) find that workers in

heat-exposure industries work one hour less when daily maximum temperature reaches

9Physical risk refers to economic losses resulting from the increased frequency and severity of climate-related
weather or disaster events. For instance, rising sea levels may inundate coastal communities, and wildfires
may devastate residential properties and corporate warehouses. Transition risk involves the uncertain im-
pact of shifting to a low-carbon economy, such as changes in policies (e.g., carbon taxes), technologies, and
consumer preferences.

10See Xiao and Zheng (2023) for a discussion of temperature-induced regulations in the labor market and the
implications for firms.

11A report by the Atlantic Council estimates that the U.S. loses approximately $100 billion annually from
heat-induced labor productivity losses, and the number will double by 2030 and quintuple by 2050 if no
actions were to be taken to reduce greenhouse gas emissions. By comparison, the record-breaking U.S.
hurricane season in 2020 caused an estimated $60 - $65 billion in economic losses. See “Extreme Heat: The
Economic and Social Consequences for the United States".
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beyond 85◦F (29.4◦C). Somanathan et al. (2021) find that absenteeism increases with both

contemporaneous and past high temperatures. To retain workers, firms need to provide

either more pecuniary compensation or non-pecuniary benefits to alleviate health threats,

such as such as professional workwear, cooling services, and medical care. Failure to do

so would expose firms to significant litigation risks (Xiao and Zheng, 2023).

The above discussions identify four channels through which high temperatures can

lower labor efficiency in production: (1) lower productivity while at work, (2) lower la-

bor supply, (3) more non-wage labor costs, and (4) higher litigation risks.12 While the

neoclassical economic framework posits that labor inputs are fully flexible and have lit-

tle impact on firms’ operations, the reality is different; firms face numerous frictions that

impede their labor adjustments (Taylor, 1999). Powerful labor unions, for instance, of-

ten intervene in firms’ wage and firing decisions. Regulations on labor protection further

limit firms’ discretion in adjusting wages and labor forces. These rigidities increase firms’

operating leverages and decrease their values (Chen et al., 2011). Therefore, high temper-

atures reduce labor efficiency and pushes up firms’ production costs per unit of output.13

3.2 Adaptation to Climate Change Through Automation

As discussed above, high temperatures significantly reduce labor efficiency in produc-

tion, demonstrating that firms should enhance their production methods to establish a

more resilient operating system. Furthermore, salient heat events prompt corporate man-

agers to revise their beliefs about climate change upward and pay more attention to cli-

mate risks (e.g., Sisco et al., 2017; Choi et al., 2020), further motivating them to prepare for

12My analysis in this paper focuses on labor productivity, which offers a lower bound for the reduction in the
efficiency of labor as a production input.

13In equilibrium, both demand- and supply-side forces could drive the decrease in labor efficiency. On the de-
mand side, workers may proactively leave an occupation, a firm, or an area, or produce less while at work if
temperature-induced health risks are too high, especially when the risk-adjusted pay is below expectations
or firms fail to implement sufficient protective measures. On the supply side, firms may voluntarily re-
duce using exposed workers in production given rising climate risks and labor costs. Crucially, both sides
predict a lower efficiency of using labor in production. Disentangling the two sides and identifying the
contribution of each are interesting but are beyond the scope of this paper.
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future heat threats. The question now is what changes firms can make.

One potential solution is automation. In practice, engineers have been developing

a variety of industrial automation equipment that can operate in extreme conditions. To

date, such equipment, which effectively substitutes for workers, has been deployed across

nearly all industries. For instance, the manufacturing sector uses technologies like Com-

puter Numerical Control (CNC) machinery and robotic arms, while the chemical and

pharmaceutical industries utilize robots to transfer and process dangerous chemicals. By

delegating tasks to fast, consistent, and resilient automated equipment, firms ensure not

only increased productivity but also the well-being of their workforce in challenging con-

ditions (e.g., Bellingham and Rajan, 2007; Gihleb et al., 2022).

Similarly, firms can use all kinds of automation equipment to address temperature

threats to their production. For example, instead of using workers to inspect high-voltage

power lines, electric power companies can use specialized robots that are less affected by

high temperatures.14 Likewise, the oil industry may deploy various robots and sensors to

monitor the operating status of their pipelines and detect leaks, thereby reducing the need

for field workers. In the service industry, logistic companies can leverage automatic sort-

ing machines and autonomous vehicles to distribute packages more efficiently without

exposing workers to excess heat.

In summary, high temperatures negatively affect the efficiency of using labor relative

to capital assets in production processes. Firms can confront this challenge by transition-

ing towards more capital-intensive production functions - a higher use of capital and a

lower reliance on labor. Given the escalating threats of extreme heat in the coming years,

it’s expected that firms will increasingly adopt capital-intensive production functions.

14A robot named “Expliner” was specifically developed by a Japanese company, Hibot, to inspect high-
voltage power lines in 2010.
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4 Data, Measures, and Summary Statistics

4.1 Firms

I collect data on public firms and their balance sheet information (annual and quarterly)

from the Compustat/CRSP Merged database. I exclude firms from financial, utility, pub-

lic administration, and unclassified industries. Firms headquartered outside of the U.S.

are dropped. Information on firms’ historical headquarters state, county, and industry

classifications is compiled from the “Augmented 10-X Header Data" provided by Bill Mc-

Donald and “Company Headquarters" provided by Joshua A. Lee.15

4.2 Plants

I obtain data on plant-level locations, employment, sales, and industry classifications

from Your Economy Time Series (YTS) from 1998, provided by the Business Dynamics

Research Consortium (BDRC) at the University of Wisconsin.16

4.3 Temperatures

I obtain data on daily temperatures and precipitation for 1981 - 2022 from the PRISM Cli-

mate Group maintained by Oregon State University. PRISM gathers climate observations

from diverse monitoring networks and employs rigorous quality controls to develop spa-

tial climate datasets to reveal short- and long-term climate patterns. The data covers each

of 481,631 16-square-kilometer (i.e., 4×4 km) grids for the continental U.S. and includes

daily mean, minimum, and maximum temperatures, as well as daily precipitation levels.

I aggregate the grid-level information to the county level.

This paper aims to study how unexpected high temperatures affect firms’ labor produc-

tivity and adaptation strategies. In line with the goal, I construct a measure of heat shocks

building upon prior works (Perkins and Alexander, 2013; Addoum et al., 2020; Pankratz

15I thank Bill McDonald and Joshua A. Lee for sharing the data.
16All establishments covered by YTS are in-business. Businesses that are created for the purpose of housing

financial, real estate, and tax reporting entities, or are suspected of never actually conducting commercial
activities, are not included. See https://wisconsinbdrc.org/ye-time-series/ for more details of the data.
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and Schiller, 2023). First, I calculate the 90th percentile of historical temperature distri-

butions for each county on a monthly basis, using temperature data from 1981 up to the

previous year (1981 to t-1), with a maximum of 30 years. Second, for each day within

a given county and month, I compare the realized daily maximum temperature with the

estimated 90th percentile to identify abnormally hot days, i.e., Realized Temperatures ≥ 90th

Percentile. Third, given that subsequent empirical analyses are conducted at the year level,

I aggregate the number of hot days during summer months each year to develop a mea-

sure that captures significant upward shifts in temperature distributions compared to

historical data.17,18 Specifically,

1(Realized ≫ Expected)c,t =


1 No. Hot Days [Realized Temperaturesc,t ≥ 90th Percentile∗c,t] ≥ T

0 otherwise

(1)

where c denotes county and t denotes year. Realized Temperaturesc,t is daily maximum

temperatures in county c and year t. 90thPercentile∗c,t is the estimated 90th percentile of

county c’s past temperatures. No. Hot Days is the number of hot days in summer in county

c and year t, based on “Realized Temperaturesc,t ≥ 90th Percentile∗c,t”. T is the threshold to

identify abnormally hot summers after adjusting for seasonality and location.19

By construction, this method identifies hot days in a relative sense - comparing the cur-

rent to historical temperatures in the same county and month. For each specific county,

if there are no changes in temperature distributions from the past to the current year, one

17Summer months include June, July, and August, following the definition of meteorological seasons. I ex-
clude hot temperatures in other months, as high temperatures outside the summer season, especially during
winter, can be beneficial for workers. For example, McDonald’s earnings announcement in 2015 stated that
- “fourth quarter comparable sales increased 5.7%, benefiting from...unseasonably mild weather".

18Figure ID.1 presents the number of days with maximum temperatures above the estimated 90th percentile
for the average county from 1999 to 2019. It shows that, from 1999 to 2019, the average number of hot days
hovers around 10, but with considerable year-to-year variability. As a comparison, the year-to-year change
in average temperatures is relatively small in Figure ID.2.

19Ideally, one should incorporate humidity and wind speed into this measure. However, comprehensive and
accurate data on humidity and wind is not available.
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would anticipate approximately 10 days (T = 10) to be flagged as hot.20 If a summer

experiences more than 10 hot days (T > 10), it implies an upward shift in temperature

distributions. Put differently, any additional hot days beyond the expected ten signify

unexpected heat shocks. To capture a significant upward shift and, consequently, an un-

likely overlooked heat shock, I set the threshold at T = 15, a 50% increase relative to the

benchmark.21 It’s worth emphasizing that T = 15 does not simply mean 5 additional hot

days in a summer. Instead, it implies a significant intensification of heat.22,23

To match the measure with firm-level analyses using Compustat/CRSP, I aggregate

the county-level heat shocks at the firm level using the plant-level data on employment

from YTS as follows:

1(Realized ≫ Expected) f ,t =


1 No. Hot Days f ,t ≥ T=15

0 otherwise
(2)

No. Hot Days f ,t =
C f ,t

∑
c=1

(
Emp f ,c,t

Emp f ,t
× No. Hot Days [Realized Temperaturesc,t ≥ 90th Percentile∗c,t]

)
(3)

where f denotes firm, c denotes county, and t denotes year. C f ,t is the total number of

counties in which firm f ′s plants operate. Emp f ,c,t is firm f ′s employment in county c

and year t. Emp f ,t is f ′s total employment in year t. No. Hot Days f ,t is the employment-

20The meteorological summer season comprises a total of 92 days — 30 days in June, 31 days in July, and 31
days in August. Consequently, assuming no changes in temperature distributions, a typical summer would
yield around 10 hot days, i.e, 92/10=9.2 (rounded up to 10).

21The mean, the 25th percentile, the median, the 75th percentile, and the 90th percentile of the number of
days exceeding the 90th percentile temperature threshold in a summer are 10, 3, 8, 14 and 22, respectively.
Therefore, T=15 captures the top-quartile cases with severe heat shocks. In Internet Appendix Table IE.5
and IE.6, I set T = 14 (a 40% increase in abnormally hot days) and T = 16 (a 60% increase) to show the
robustness of the results.

22Figure ID.3 shows that the average number of hot days above the 90th percentile is 22 in hot scenarios
(T ≥ 15) and 6 in non-hot ones (T < 15). The number of days with temperatures above the 30◦C is 60 and
42, respectively, indicating that the relative temperature shocks are hot at the absolute level as well. Further,
the average daily maximum temperatures are 31◦C and 29◦C, respectively.

23Research indicates that labor productivity declines at temperatures above 24◦C and declines sharply be-
yond 29◦C (e.g., Seppanen et al., 2006; Graff Zivin and Neidell, 2014).
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weighted average of firm f ′s exposure to heat shocks across counties in year t. For con-

sistency, I still set T = 15.

4.4 Labor Exposure to Climate Risk

To quantify firms’ exposure to climate risk through a labor channel, I first obtain industry-

level data on occupations from the Occupational Employment and Wage Statistics (OEWS)

provided by the U.S. Bureau of Labor Statistics (BLS). This data includes occupations

needed in each industry, wage estimates for each occupation, and the number of employ-

ees working in each occupation.

Then, I collect data on each occupation’s current and historical exposures to chang-

ing climates from the U.S. Department of Labor’s Occupational Information Network

(O*NET) program. This study uses the survey that focuses on the working context of

“Outdoors, Exposed to Weather". Specifically, O*NET gives each occupation a score be-

tween 1 and 5 based on the following question - “How often does this job require working

outdoors, exposed to all weather conditions?"24 A higher score indicates a greater degree of

an occupation’s exposure to climate conditions while performing job duties.25

Utilizing the OEWS and the O*NET data, I construct an index of labor exposure to

climate risk following prior works on routine task and labor skill (Autor and Dorn, 2013;

Ghaly et al., 2017). Specifically,

Labor Exposurei,t = Rankr=20
r=1

{ Oi,t

∑
o=1

(
Empi,o,t

Empi,t
× Scoreo,t

)}
(4)

24A score of “1" indicates that workers in this occupation are never exposed to any weather conditions during
the working process. “2" indicates “once a year or more but not every month." "3" indicates "once a month or
more but not every week." "4" indicates “once a week or more but not every day." “5" indicates “every day." For
detailed information on the underlying datasets and the rationale in selecting occupational characteristics
for measure construction, refer to the Internet Appendix, Section C.1.

25By definition, this score captures an occupation’s exposure to many climate conditions beyond high tem-
peratures, the focus of this paper. In Internet Appendix Section E Table IE.7 and Section F Table IF.7, I
discuss the impact of other climate conditions (e.g., cold temperatures, precipitation, floods, earthquakes,
etc.) and show the robustness of my results after controlling for other types of climate conditions.
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where i denotes industry, o denotes occupation, and t denotes year. Oi,t is the total num-

ber of occupations in industry i and year t. Scoreo,t is the occupational score of outdoor

activity from the O*NET program for occupation o in year t. Empi,o,t is the number of

employees working in occupation o in industry i and year t. Empi,t is the total number of

employees in industry i and year t. This index thus is a weighted average of all occupa-

tions’ outdoor intensity in a four-digit NAICS industry. The weight is the percentage of

employees working in a given occupation in an industry. With this index, I further cre-

ate a rank variable Labor Exposurei,t, ranging from 1 to 20, with 20 indicating the highest

exposure. This measure is available for the period 1999 - 2022.26

Figure IC.1, IC.2, and IC.3 and Table IC.2 in Internet Appendix C present the distri-

bution of the exposure measure across sectors, labor skill levels, and counties. A key

takeaway is that there exist significant variations in workers’ climate exposures within

and across sectors, skill levels and counties, indicating that this measure does not sim-

ply capture sector-, skill- or county-specific heterogeneities. The widespread presence of

high-exposure industries suggests that high temperatures have a comprehensive impact

on the entire U.S. economy. Further, in Internet Appendix C.3, I validate the measure of

labor exposure to climate risk by showing that managers of high-exposure firms discuss

more climate-related issues in earnings conference calls and 10-Ks, suggesting that depen-

dence on outdoor workers exposes firms to significant climate risks. More importantly,

this labor-channel exposure can not be fully explained by other measures of climate ex-

posures developed in the literature or by Trucost Climate Analytics. Collectively, these

evidence highlights the importance of and builds the foundation for studying corporate

exposure to climate change and adaptations from a labor channel.

I further aggregate the exposure measure at the firm level using plant-level data on

26The O*NET data uses the Standard Occupational Classification (SOC) taxonomy to define occupations,
while the OEWS data adopted this taxonomy starting in 1999. Therefore, I exclude the OEWS data in 1997
and 1998 when matching the two datasets.
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employment across industries from YTS as follows:

Labor Exposure f ,t =
I f ,t

∑
i=1

(
Emp f ,i,t

Emp f ,t
× Labor Exposurei,t

)
(5)

where f denotes firm, i denotes NAICS4 industry, and t denotes year. Ii,t is the number of

industries in which firm f ′s plants operates. Emp f ,i,t is firm f ′s employment in industry i

and year t. Emp f ,t is firm f ′s total employment in year t. Labor Exposurei,t is the industry-

level labor exposure to climate risk in Equation (4). The firm-level labor exposure is thus a

weighted average of the industry-level measure, with the weight being the percentage of

firm f ′s employees in a NAICS4 industry. Using the same method, I construct a measure

of labor skill based on job zones from the O*NET program.

4.5 Additional Data

Temperature Projections. I obtain data on county-level long-term temperature projec-

tions from the Centers for Disease Control and Prevention (CDC). The raw data is from

the Localized Constructed Analogs (LOCA), derived from 32 Coupled Model Intercom-

parison Project (CMIP5) models that are widely used in the climate science literature.

The CDC processes the raw data and aggregates it at the county level. The data gives

projected differences in extreme hot days (90◦F/32.2◦C) between the time period selected

(2016 - 2045) and the referent period (1976 – 2005).

Patents. Data on firms’ patenting activities is from Kogan et al. (2017). It includes the ap-

plicant’s PERMNO number, filing year, grant year, and the estimated patent value. Data

on the classification of automation-related patents is from Mann and Püttmann (2023).

Specifically, the authors apply a machine learning algorithm to all U.S. patents granted

from 1976 to 2014 to identify automation-related patents, i.e., patents used to develop a

device that carries out a process independently of human intervention. The device can be

a physical machine, a combination of machines, an algorithm or a computer program.27

27The definition of independence means that the automation device works without human intervention, ex-
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Quarterly Census of Employment and Wages (QCEW). Data on industry dynamics (em-

ployment and wages) for each U.S. county is from the Bureau of Labor Statistics’s (BLS)

QCEW database. The QCEW program publishes a quarterly count of employment and

wages covering more than 95% of all jobs in the U.S. For this study, I use the QCEW

data that covers all six-digit NAICS industries for more than 3,000 counties at the annual

frequency from 1990 to 2022.

4.6 Sample and Summary Statistics

The final sample for empirical analyses spans the period 1999 - 2019.28 Table 1 reports

summary statistics of variables used in empirical analyses. Panel A presents firm-level

variables and Panel B presents plant-level ones. The mean and median of a firm’s labor

productivity are 4.144 and 4.100, with a standard deviation of 0.835. The average use of

capital and capital per employee is 4.914 and 4.364. Meanwhile, 18.6% of the firms are

exposed to short-term temperature shocks. The average rank of labor exposure to climate

risk is 8 at the NAICS4 industry level and 9 at the firm level.

4.7 Data Issues

One caveat should be recognized before moving to empirical analyses. While the YTS

data offers an extensive overview of firms’ employment and sales across counties and

industries, a large portion of the data is imputed, despite its widespread use in academic

and policy works (e.g., Ghent, 2021; Campello et al., 2022; Flynn and Ghent, 2022; Coyne

cept at the start and for supervision. This definition excludes patents that are minor parts of an automation
innovation and highly abstract patents with no obvious application. Therefore, their classification is fairly
strict, as devices that require some labor involvement but are efficiency-enhancing are also desirable for
reducing labor costs.

28I choose 1999 as the beginning year due to the availability of the measure of labor exposure to climate risk.
Additionally, there were few discussions about the influence of climate change on the financial market and
firms before 2000. I end my sample in 2019 to avoid any disruptions to production caused by the Covid-19
pandemic. For example, industries with significant shares of outdoor workers are likely less affected by
Covid-19, considering that maintaining social distance is easier for outdoor workers.
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and Johnson, 2023).29 The imputation introduces measurement errors and attenuation

biases that are against me finding significant results. This implies that conclusions drawn

from the YTS data might underestimate the impact of temperatures on corporate activi-

ties. Nevertheless, I conduct additional analyses to ensure the robustness of my results.30

5 Physical Climate Risk: Heat Shocks and Labor Productivity

My empirical analyses start with investigating the physical risk mechanism of high tem-

peratures, specifically the impact of heat shocks on firm- and plant-level labor productiv-

ity, which I expect to be negative and statistically significant.

5.1 Firm-level Evidence
5.1.1 Empirical Methodology

I first conduct analyses at the firm level using the quarterly Compustat/CRSP Merged

database. To match with heat shocks in summer, I focus on sales in summer quarters,

i.e., quarters including at least one summer month. I measure labor productivity as the

natural logarithm of sales per employee. The empirical specification is as follows.

Yf ,c,i,t =µ f + τc,t + θc,i + πi,t + β1 1 (Realized ≫ Expected) f ,t+

β2 1 (Realized ≫ Expected) f ,t × Labor Exposure f ,t + β3Labor Exposure f ,t + δX f ,t + ε f ,c,i,t
(6)

where f denotes firm, c denotes headquarters county, i denotes industry, and t denotes

year. Y is the dependent variable - the natural logarithm of firm f ′s sales per employee

(Log(Sales/Emp)). 1 (Realized ≫ Expected) is a dummy indicating firm f ′s exposure to heat

shocks (Equation (1) and (2)). Labor Exposure is the measure of firm f ′s exposure to climate

29See Kunkle (2018) for a comparison of the YTS data with the BLS’s Current Employment Statistics (CES)
and Current Population Survey (CPS).

30For instance, I cross-verify YTS-based plant-level results on labor productivity using the firm-level data
from Compustat. Also, my measures of firm-level labor exposure to climate risk and temperature shocks
(Equation (2) and (5)) could be biased. To mitigate the concerns, I show that my results are robust to using
the industry-level labor exposure to climate risk (Equation (4)) and heat shocks in firms’ headquarters
counties (Equation (1)). Further details are discussed in the empirical part.
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risk through the labor channel (Equation (4) and (5)). X is a vector of controls including

the logarithm of total assets (Size), market-to-book ratio (M/B), book leverage (Book Lever-

age), cash holdings (Cash), and a dummy indicating that a firm pays dividends (Dividend

Payer). µ f is firm fixed effects that control for firm-level time-invariant characteristics. τc,t

is county-by-year fixed effects that control for time-varying changes in economic condi-

tions and policies in county c. θc,i is county-by-NAICS2 industry fixed effects that control

for the importance of industry i in county c. πi,t is NAICS2 industry-by-year or NAICS4

industry-by-year fixed effects that control for time-varying growth trends of industry i.

One concern regarding using temperatures as shocks is that firms may incorporate

local climate conditions into their production decisions, such as choices of production

functions, product types, and operating locations, which will invalidate the assumption

that temperatures are exogenous shocks and, therefore, may bias the estimation. How-

ever, this concern is more relevant when using absolute temperature levels, i.e., num-

ber of days with temperatures above 30◦C. By construction, this relative measure of

heat shocks (1 (Realized ≫ Expected)) captures deviations from the means of county- and

month-specific historical temperatures. Consequently, these temperature deviations can

be regarded as random draws from the distribution of temperatures within and across

counties (Auffhammer et al., 2013; Dell et al., 2014). Consistent with this notion, over

time, the occurrence of relative hot days is not concentrated in a specific county in Fig-

ure 1, which presents the average number of relative hot days for each county in the

continental U.S. in 2000, 2006, 2009, 2012, 2015, and 2018. Instead, unexpected high tem-

peratures appear in different counties across years. Therefore, for any given firm, heat

shocks are plausibly exogenous and randomly distributed across its operating locations.

Accordingly, firms cannot take any precautious measures ex ante.
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5.1.2 Empirical Results

Table 2 estimates the impact of unexpected high temperatures on labor productivity us-

ing equation (6). Columns (1) - (5) report analyses using the industry-level measure of

labor exposure to climate risk and columns (6) - (10) report analyses using the firm-level

measure.31 Columns (1) and (6) report the average effects of heat shocks on labor pro-

ductivity. Consistent with Addoum et al. (2020), the coefficient of heat shocks is negative

but is not statistically significant, indicating a limited impact of high temperatures for an

average firm in the economy. I interact heat shocks with the measure of labor exposure in

columns (2) and (7), and further add county-by-year fixed effects in columns (3) and (8).

The coefficient of heat shocks becomes positive but is not significant, except for column

(2). Importantly, the coefficient of the interaction term is negative and statistically signifi-

cant, suggesting that extreme heat negatively affects labor productivity of high-exposure

firms. Such effects are not likely driven by changes in state- or county-level characteris-

tics, given the inclusion of state-by-year and county-by-year fixed effects. The results also

hold after adding industry(NAICS2)-by-year and county-by-industry(NAICS2) fixed ef-

fects in columns (4) and (9). The results still hold after using NAICS4-by-year to replace

NAICS2-by-year fixed effects in columns (5) and (10), indicating that the results are not

likely driven by changes in industry conditions.32

At the bottom of the table, I present the average effects of heat shocks on labor pro-

ductivity for firms with labor exposure at the 75th percentile of the distribution (Labor

Exposure=15) and firms with the highest exposure (Labor Exposure=20). Column (5) shows

31I present results using both industry- and firm-level measures of labor exposures to address concerns re-
garding quality issues of the YTS data. Results using temperature shocks in firms’ headquarters counties
are reported in Internet Appendix E Table IE.9, due to space limitations.

32Consistent with prior works on labor productivity, employment and capital utilization (e.g., Addoum et al.,
2020; Bena et al., 2022; Pezone, 2023), adjusted R2 in this and subsequent regressions are high. For example,
in Addoum et al. (2020), the adjusted R2 from estimating effects of temperatures on sales and labor produc-
tivity is above 90%. In Bena et al. (2022), the adjusted R2 from estimating effects of labor protections on the
utilization of capital versus labor is around 90%. In Pezone (2023), the adjusted R2 from estimating effects
of judicial trial length on employment is about 93%.
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that firms with exposure at the 75th percentile experience a loss of approximately 1.9% in

labor productivity following a heat shock. Labor productivity of firms with the highest

exposure is about 3% lower after a shock. Detailed estimations of the effects for firms

in each exposure category (1 to 20) is reported in Panel A of Table IE.1 and Figure 2. As

can be seen, significant heterogeneities exist in the treatment effects of heat shocks across

firms with different exposures. Specifically, the effects are positive for firms with very

limited exposure to climate risk (Labor Exposure≤6) but are not statistically significant.

The effects start becoming negative for firms with an exposure of 7 and significantly neg-

ative for firms with an exposure of 12. The economic magnitude increases from 1.3% to

3% as the exposure increases from 12 to 20.

Table IE.1 Panel B and Figure 3 present the dynamic treatment effects of heat shocks

on labor productivity. Results show that labor productivity is only negatively affected by

concurrent heat shocks (T). Neither past (T − 3, T − 2, or T − 1) nor future (T + 1, T + 2, or

T + 3) shocks influence present labor productivity. This evidence supports the claim that

heat shocks are exogenous from a given firm’s perspective and there are no pre-existing

differential trends between firms that experience heat shocks and those that do not.

5.2 Plant-level Evidence

I also conduct analyses on labor productivity using plant-level data on employment and

sales from the YTS. I aggregate the data at the firm-by-county-by-NAICS4 industry level

to enhance the estimation accuracy and efficiency. Below is the empirical model.

Yf ,c,i,t =µ f ,t + τc,t + θc,i + πi,t + δi + β1 1 (Realized ≫ Expected) f ,c,t

+ β2 1 (Realized ≫ Expected) f ,c,t × Labor Exposure f ,i,t + β3 Labor Exposure f ,i,t + ε f ,c,i,t
(7)

where f denotes firm, c denotes county of plants, i denotes industry of plants, and t

denotes year. Y is the dependent variable - the natural logarithm of sales per employee

(Log(Sales/Emp)). 1 (Realized ≫ Expected) is a dummy indicating that firm f ′s plants in
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county c are exposed to heat shocks (Equation (1)). Labor Exposure measures the exposure

of firm f ′s plants in industry i to climate risk (Equation (4)). µ f ,t is firm-by-year fixed

effects. τc,t is county-by-year and θc,i is county-by-NAICS2 industry fixed effects. πi,t is

NAICS2 industry-by-year and δi is NAICS4 industry fixed effects. In the strictest model, I

use firm-by-county-by-year to replace firm-by-year and county-by-year fixed effects, and

NAICS3 industry-by-year to replace NAICS2 industry-by-year fixed effects.

Table 3 presents the results. Consistent with the firm-level evidence, the population

average effects of heat shocks on plant-level labor productivity is zero in columns (1)

and (3). However, the coefficient estimate of the interaction term between heat shocks

and labor exposures is negative and statistically significant in columns (2) and (4). The

effects hold in columns (5) and (6) after adding county-by-year fixed effects to remove

heterogeneities across counties and firm-by-year fixed effects to remove heterogeneities

across firms. The results are also robust to using NAICS3 industry-by-year to replace

NAICS2 industry-by-year fixed effects in column (7). In columns (8) and (9), I further use

firm-by-county-by-year to replace firm-by-year and county-by-year fixed effects, which

enables the comparison of labor productivity across plants that have heterogeneous labor

exposures but are in the same firm-county pair. Put differently, this test compares plants

that have the same firm-level fundamentals, experience the same heat shocks, but have

different levels of heat exposures through the labor channel. The negative effects of heat

shocks on labor productivity of high-exposure plants hold.

Internet Appendix Table IE.2 and Figure IE.1 present the effects of heat shocks on

plant-level labor productivity in each labor exposure category. Consistent with the firm-

level evidence, the negative impact of heat shocks concentrates among high-exposure

plants, i.e., exposure ≥ 13. Internet Appendix Table IE.2 Panel B presents consistent dy-

namic effects of heat shocks, further supporting the firm-level evidence.

Notably, although both firm- and plant-level analyses show that unexpected high tem-

peratures negatively affect labor productivity, the economic magnitude is larger at the
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firm level. For example, after a heat shock, firm-level labor productivity drops by 1.9%

for firm with Labor Exposure=15, compared to a 0.13% decline at the plant level. Two

potential reasons may contribute to the gap. First, the firm-level data of sales in sum-

mer is from the quarterly Compustat/CRSP, while the YTS data only contains annual

sales, which can be influenced by more factors beyond summer temperatures. Put dif-

ferently, the time mapping between labor productivity and heat shocks is less precise in

YTS-based tests, which is against me finding a large economic magnitude, even though

the YTS data provides more cross-sectional variations. Second, the gap may be attributed

to the errors-in-variables problem in the YTS data. As highlighted in Section 4, the YTS

data on employment, especially sales, is mostly imputed. The measurement errors could

introduce attenuation bias, thereby dampening the estimated economic magnitudes.

5.3 Robustness

In Internet Appendix E, I conduct additional tests to show the robustness of my results

in Table 2 and 3. First, in Table IE.3 and IE.10, I use a rolling window of the past 10 or 20

years to estimate the 90th percentile threshold to measure heat shocks. I also use a fixed

reference period from 1981 to 2000 (untabulated). Results hold. Second, I reconstruct the

measure of heat shocks by further incorporating absolute temperature levels following

Pankratz and Schiller (2023). Specifically, a heat shock is identified if (1) a relative heat

shock happens (Equation (1) and (2)); and (2) a county or a firm experiences more than 30

days with absolute temperatures above 30◦C in summer. For the alternative, I require 40

days with temperatures above 30◦C. Table IE.4 and Table IE.11 report the results. Third,

instead of setting T = 15, I set T = 14 in Table IE.5 to reflect a 40% increase in abnor-

mally hot days and set T = 16 in Table IE.6 to reflect a 60% increase in abnormally hot

days. Results hold. Fourth, Internet Appendix Table IE.7 and IE.12 control for exposures

to other types of climate events, such as cold temperatures, precipitation, earthquakes,

floods, wildfires, and storms. Results hold. Fifth, high temperatures may also affect con-

25



sumer behaviors. In Table IE.8, I show that this consumer channel does not drive my

results by excluding consumer-oriented sectors. I further drop the agricultural sector and

split firms into two broad categories: goods-producing and service sectors. The effects

of high temperatures exist in both categories. The evidence also demonstrates that drops

in crop yields do not drive the findings. More importantly, service sectors suffer larger

losses in labor productivity from heat (-4.4%) relative to goods-producing sectors (-2.3%),

suggesting that prior studies focusing on manufacturing firms might underestimate the

impact of extreme heat on labor productivity. Sixth, Table IE.9 redo the analyses by uti-

lizing heat shocks happened in firms’ headquarters counties. Results hold. Seventh, I

conduct segment-level analyses using data on segment sales and assets from the Compu-

stat segment files in Table IE.13. Segments with labor exposure at the 75th percentile lose

about 1.9% of asset-scaled sales following heat shocks, while segments with the highest

exposure lose about 3.4%.

In summary, this section presents robust and consistent evidence demonstrating that

unexpected high temperatures negatively affect labor productivity of high-exposure firms

and plants. The findings support the physical risk mechanism of extreme heat and the

labor channel of corporate exposure to climate change. An inevitable question then arises:

How would firms adapt to heat threats, considering the increasing frequency and severity

of heat events over time? I explore this question in the remaining part of this paper.

6 Adaptation Through Automation

As discussed in Section 3, firms could automate tasks performed by heat-exposed work-

ers to mitigate the decline in labor efficiency compared to capital as a production input.

Given that much of automation in the economy involves an increasing reliance on capital

and a decreasing use of labor (e.g., Brozen, 1957; Karabarbounis and Neiman, 2014; Ace-

moglu and Restrepo, 2019, 2020), I analyze firms’ utilization of capital assets (i.e., comput-

ers, machines, robots, and sensors), employment practices, and development of automa-
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tion technology following heat shocks. Analyses of capital utilization and automation

technology are at the firm level given that the YTS data does not provide plant-level cap-

ital information. Analyses of employment practices use both firm- and plant-level data.

6.1 Capital Utilization in Production
6.1.1 Empirical Methodology

The implementation of adaptation through automation is costly, time-consuming, and

challenging. Firing workers displaced by automation can be onerous, particularly in the

presence of labor unions and regulations. Investment in capital assets demands sub-

stantial financial resources, as well as the hiring and training of skilled workers who

can operate new capital assets. Consequently, firms might not resort to automation im-

mediately or fully after a one-time short-term heat shock. Instead, they make gradual

adjustments in production inputs over the years after sensing medium-term or long-

term temperature threats. To capture this nuance, I redesign the empirical strategy to

study firms’ response to medium-term heat shocks, i.e., abnormally high temperatures

in the past three years compared to historical distributions. Medium-term heat shocks

(1(Realized ≫ Expected)(M)) are measured in the same way as Equation (1) and (2), with

two modifications. First, I calculate the total number of hot days (temperatures above the

rolling 90th percentile) in summers over the period from t − 3 to t. Second, I use T = 45

relative to the benchmark 40 to define medium-term heat shocks - No. Hot Dayst−3,t ≥

4533, which is equivalent to a 12.5% average increase relative to past temperature distri-

butions, or at least one significant short-term heat shock (i.e., 45=15+10+10+10) from t − 3

to t. In line with this, Labor Exposure is recalculated as the average exposure from t − 3 to

t. The empirical model mirrors that in Equation (6).

33The mean, the 25th percentile, the median, the 75th percentile, and the 90th percentile of the total number of
hot days are 40, 25, 36, 49, and 67, respectively.
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6.1.2 Empirical Results

Table 4 presents the results. Columns (1) - (4) use the natural logarithm of total capital

(Log(Capital)) as the dependent variable, which is the sum of a firm’s property, plant, and

equipment (PPENT) and its R&D stock. R&D stock is the sum of a firm’s past R&D ex-

penses, assuming a 20% depreciation rate. Columns (5) - (8) use the natural logarithm

of employment-scaled total capital (Log(Capital/Emp)) as the dependent variable, a stan-

dard measure of capital-labor ratio, which captures the use of capital relative to labor

in production. A higher ratio implies a more capital-intensive production function and

a higher-degree of automation (Brozen, 1957). In columns (1) and (5), the coefficient of

heat shocks (1 (Realized ≫ Expected) (M)) is positive but not statistically significant, indi-

cating that medium-term heat shocks do not affect the average firm’s capital utilization

in production. In columns (2), (3), (6) and (7), the coefficient of 1 (Realized ≫ Expected)

(M) becomes negative and significant, suggesting that firms with zero heat exposure even

reduce capital after heat shocks. Importantly, the interaction term between heat shocks

and labor exposure (1 (Realized ≫ Expected) (M) × Labor Exposure) is positive and statis-

tically significant. The results are not driven by firm-level time-invariant or county-level

time-varying characteristics, given the inclusion of firm and county-by-year fixed effects.

In columns (4) and (8), after adding county-by-NAICS2 industry and NAICS2 industry-

by-year fixed effects, the significance of 1 (Realized ≫ Expected) (M) disappears but the

significance of 1 (Realized ≫ Expected) (M) × Labor Exposure remains. The economic mag-

nitude is also large. In column (4), the post-estimation test suggests that total capital

utilization increases by 2.6% for firms with heat exposure at the 75th percentile and by

3.9% for firms with the highest exposure. In column (8), the capital-labor ratio increases

by 1.6% for firms with heat exposure at the 75th percentile and by 2.8% for firms with the

highest exposure. The economic effects for firms in each exposure category (1 to 20) are

reported in Table IF.1 and Figure 4. Overall, results in Table 4 imply that medium-term
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heat shocks prompt firms to enhance their capital utilization in production processes, as

evidenced by a significant increase in both total capital and capital-labor ratios.

6.1.3 Heterogeneities

I also explore cross-sectional heterogeneities in the effects of medium-term heat shocks

on firms’ capital utilization in production. First, I examine the impact of projected long-

term temperature increases in firms’ operating locations. My economic reasoning behind

adaptation through automation is that firms’ current production methods are not robust

to abnormally high temperatures and they expect to experience more heat shocks in com-

ing years. Consequently, firms reorganize their production processes to ensure a more

resilient operating system. However, in the absence of future extreme heat events, firms

may not deem adaptation necessary. To test this conjecture, I divide firms into two cate-

gories: those operating in counties with projected temperature increases above the sam-

ple median, and those operating in counties with projected increases below the median.

I then examine the effects of medium-term heat shocks on capital utilization for the two

groups separately. Analysis in columns (1) - (4) of Table 5 reveals that heat shocks posi-

tively affect capital-labor ratios of firms in counties with significant projected temperature

increases while having no effect on firms in other areas.

Second, I examine the impact of labor unions. Prior studies show that automation

increases more in firms that have limited flexibility in workforce management and a

key driver of such inflexibility is labor unions, which significantly strengthen workers’

bargaining power over firms (Chen et al., 2011). For example, labor unions can protect

employees from wage cuts and layoffs, even when their performance decreases in high

temperatures. Consequently, in industries with higher unionization rates, firms are more

incentivized to augment capital use in response to temperature challenges. Consistent

with this prediction, results in columns (5) - (8) demonstrate that heat shocks positively

affect capital-labor ratios predominantly in highly unionized industries.
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Third, the feasibility of enhancing automation hinges on the substitutability of ex-

posed workers with automated capital assets. In industries where the substitution is un-

feasible, firms must persist in using exposed workers despite high risks and costs. This

predicts that the temperature effects should be more pronounced in industries where jobs

are easy to automate. Building on prior studies that document a reduction in low-skilled

workers due to automation (e.g., Graetz and Michaels, 2018), I investigate how labor skills

influence the effects of heat shocks on capital utilization. Analysis in columns (9) - (12) of

Table 5 shows that heat shocks only affect capital-labor ratios of firms that predominantly

employ low-skilled workers, indicating that the potential for increasing automation is

contingent on the skill composition of heat-exposed workers.

6.1.4 Robustness and Discussions

Robustness. In Internet Appendix F, I present additional analyses demonstrating the

robustness of the results in Table 4. I first show that the results are robust to using a

rolling window of the past twenty years (Table IF.5), or a rolling window of the past ten

years (untabulated), or a fixed reference window from 1981 to 2000 (untabulated) to estimate

the 90th percentile to measure medium-term heat shocks. Second, the results hold after

further incorporating the number of absolute hot days (i.e., temperatures above 30◦C) to

construct heat shocks. Specifically, heat shocks are redefined by requiring (1) the existence

of medium-term relative heat shocks (1 (Realized ≫ Expected (M)) and (2) at least 100

days with temperatures above 30◦ C in summers from t − 3 to t (Table IF.6). The results

are also robust to using an alternative of 120 days (untabulated). Third, the results hold

after controlling for cold temperatures and precipitation (Table IF.7) and other types of

disasters in FEMA (untabulated). Fourth, in Table IF.8, I repeat the analyses but using the

firm-level measure of labor exposure to climate risk. Results hold. Last, I examine firms’

capital investment rates in Table IF.9. Consistent with findings in Table 5, heat shocks

positively influence firms’ capital investment rates, with this effect predominantly seen
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in firms operating in counties with significant long-term temperature increases and those

employing a large share of low-skilled workers.

Discussions. Several issues warrant further discussions. First, my economic reasoning

for adaptation through automation rests on three assumptions. The first assumption is

that extreme heat affects the performance of capital assets less than that of workers. While

this is a reasonable assumption34, it’s crucial to recognize that high temperatures can re-

duce the performance of capital assets as well.35 The second assumption is that automa-

tion serves a key strategy for firms to mitigate temperature challenges. In practice, firms

may have many other adaptation strategies, such as climate controls, relocation, sup-

ply chain management, outsourcing, changing working schedules, and financial hedging.

While a comprehensive analysis of all adaptation strategies is essential, this paper focuses

on automation and leaves others to future works. The third assumption is that the costs

of using capital assets for operational functions must be lower than using human capital,

even though high temperatures may push up the prices of capital assets.36 Crucially, if

any of the three assumptions is violated, I should not find significant effects of high tem-

peratures on automation. Put differently, if capital assets prove unreliable or too costly in

hot conditions or firms predominantly use strategies other than automation to tackle heat

risks, the effects on automation should not be observable in the data.37

Second, these capital assets are used to replace workers as production inputs, rather

than to protect them against heat threats. As discussed in Section 3, firms may invest

34Somanathan et al. (2021) show that the damage of high temperatures to labor productivity, rather than to
capital efficiency, explains the vast majority of output losses.

35For instance, excessive heat can cause mechanical fatigue, resulting in the degradation of material or com-
ponent integrity.

36For example, capital assets may require more maintenance and repairment during extreme heat. High
temperatures may trigger more energy and electricity demand, resulting in higher oil and electricity prices.
Also, a spike in the market-wide demand for specific capital assets may increase their prices.

37Some of the alternative adaptation strategies are also against me finding effects on labor productivity. For
example, if firms have superior climate controls for outdoor workers, we should not expect their produc-
tivity to reduce significantly under high temperatures.
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in climate controls to protect workers against extreme heat. However, the possibility of

investing in climate controls for outdoor workers who are directly exposed to heat in

open fields is low, and the costs are high. Additionally, a recent work by Xiao and Zheng

(2023) investigates climate-induced regulations that protect workers against extreme heat

- the Heat Illness Prevention Standard (HIPS), which requires employers to provide more

cool water, access to shade, longer breaks, training, and better medical care to employ-

ees. Xiao and Zheng (2023) show that this regulation further reduces labor efficiency and

firms respond by increasing investment in information technology (IT) capital. So far, this

regulation is only effective in California (2005), Washington (2006), and Oregon (2022). I

exclude the regulation effects by examining firms and plants in non-California and non-

Washington states. Results hold. Furthermore, in Internet Appendix Table IF.10, I show

that the effects of high temperatures on automation primarily exist among firms with low

social ratings (S). This is consistent with the notion that low-S firms care less about lo-

cal communities and employee benefits and thus are more likely to fire workers and pay

less. Collectively, these evidence supports the conjecture that firms use capital assets as

substitutes for workers.

6.2 Employment Practices

I further examine firms’ employment practices in response to heat shocks, considering

that the decreased reliance on labor in production serves as both a catalyst for and a result

of heightened automation. Ideally one would analyze a firm’s hiring and firing of workers

based on heat exposures and skills, as a decrease in exposed workers could coincide with

an increase in less-exposed and skilled workers who are capable of operating automated

capital assets. However, information on occupational heat exposures and skills is missing

in Compustat and YTS. Therefore, my analysis focuses only on firm- and plant-level total

employment, acknowledging that an increase in less-exposed and skilled workers would

be against finding effects on employment reduction following heat shocks.
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Table 6 Panel A presents analyses of firm-level total employment. The empirical model

is the same as Equation (6), except that the dependent variable is the natural logarithm

of a firm’s total employment (Log(Emp)). In columns (1) - (3), analyses using the full-

sample data do not find significant effects of medium-term heat shocks on firm-level

total employment. I also find no effects when focusing on firms operating in counties

with significant projected long-term temperature increases (columns (4) & (5)) or firms

in highly unionized industries (columns (6) & (7)). In column (8), when examining firms

that predominately use low-skilled workers, I find a significant decline in employment

following heat shocks. For high-exposure firms (Labor Exposure=15), total employment

drops by around 1.6%. However, the effects disappear in column (9) when I further in-

clude NAICS2 industry-by-year fixed effects. Taken together, these findings show that

medium-term heat shocks have a limited impact on firm-level total employment.

As noted earlier, the lack of evidence on firm-level total employment does not mean

that firms’ employment practices are not affected by temperatures. Firms could reduce

heat-exposed workers while hiring more skilled and low-exposure workers to manage

automation-related assets, which is against finding effects on total employment.38 For

instance, considering the critical role of robots in advancing automation (Graetz and

Michaels, 2018; Acemoglu and Restrepo, 2020), firms may seek workers proficient in oper-

ating and developing robotics. I test this conjecture in Table 6 Panel B. Specifically, I inves-

tigate firms’ investments in robotics-related human capital following heat shocks, mea-

sured using the fraction of robotics-related job postings, provided by Babina et al. (2024).

I find that the coefficient of the interaction term between 1 (Realized ≫ Expected) (M) and

Labor Exposure is positive and statistically significant, indicating that high-exposure firms

38Also, the limited effects on total employment do not suggest that firms only increase capital to protect
employees. First, as discussed earlier, the increase in capital-labor ratio primarily concentrates among low-
S firms who care less about employee welfare, inconsistent with the labor protection argument. Second,
later in Table 6 Panel C I find strong evidence on employment reduction among small plants. Third, later I
also find strong negative effects of heat shocks on industry-wide employment in Table 8.
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are more likely to advertise job openings demanding robotics-related skills. For firms

with labor exposure at the 75th percentile, the demand for robotics-related human cap-

ital increases by 32.7% relative to the sample mean. Detailed economic effects by labor

exposure category is presented in Figure 5 (A) and Internet Appendix Table IF.2. These

evidence complements the findings in Table 4 and IF.9 and provides further support to

the automation hypothesis.

I further examine changes in plant-level employment following heat shocks in Table

6 Panel C. Consistent with the firm-level evidence, columns (1) - (4) find no effects of

high temperatures on employment in the full sample, regardless of heat exposures. In

columns (5) – (8), I focus on small plants - those with 50 employees or fewer. On the one

hand, small plants may have limited alternatives to automation to adapt. On the other

hand, firms might prioritize downsizing the workforce in small plants to address heat

threats. Supporting this conjecture, I find negative and statistically significant effects of

high temperatures on employment of small plants with high exposures. For small plants

with labor exposure at the 75th percentile, total employment drops by 0.53% following

heat shocks. Plants with the highest exposure cut 0.88% of their workforce. Figure 5 (B)

and Table IF.3 present the treatment effects of heat shocks in each exposure category. It

shows that high temperatures only negatively affect the employment of small plants with

above-median labor exposures.39 In addition, consistent with Table 5, the employment

effects mainly hold for small plants that are: (1) located in counties with significant pro-

jected long-term temperature increases; (2) in industries with high unionization rates; and

(3) in industries that predominately employ low-skilled workers.

In summary, results in Table 6 show that firms downsize their workforce in small and

exposed plants in response to unexpected high temperatures. Meanwhile, high-exposure

39In Table 8 and Internet Appendix Table IG.3, I discuss the effects of heat shocks on employment at the
county-by-NAICS4 level using the QCEW data. I find that the plant-level effects can add up to an eco-
nomically important magnitude that leads to an industry-wide employment contraction: high-exposure
industries have much lower employment levels and slower growth rates in hot areas.
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firms recruit additional workers skilled in robotics to promote automation. Together,

these results further reinforce the hypothesis that firms respond to temperature-induced

labor challenges by increasing automation.

6.3 Automation Technology

To delve deeper into the investigation, I study firms’ innovation of automation-related

technologies in the adaptation process, considering the importance of technological ad-

vancement in shaping today’s capital-intensive economy (e.g., Karabarbounis and Neiman,

2014; Acemoglu and Restrepo, 2019, 2020). For example, Karabarbounis and Neiman

(2014) show that the declining labor share since the early 1980s is mostly driven by the

decrease in the relative price of investment goods, due to advances in information tech-

nology and the computer age. To promote automation, firms with innovation ability and

efficiency may spend more effort innovating machines and equipment or new production

methods to reduce reliance on labor.40 To test this conjecture, I utilize the classification of

automation-related patents from Mann and Püttmann (2023), which identifies patents for

developing devices that carry out a process independently of human intervention.

Table 7 presents the results. The dependent variable is a dummy indicating that a firm

files at least one automation-related patent (Automation Patent) in a year. Consistent with

prior results, heat shocks do not affect the average firm’s filings of automation-related

patents. In contrast, the coefficient estimate of the interaction term 1 (Realized ≫ Ex-

pected) (M) × Labor Exposure is positive and statistically significant, suggesting that high-

exposure firms are more likely to develop automation technology after heat shocks.41 The

40Firms don’t always innovate independently to progress in automation. If the machines and equipment a
firm needs are readily available in the market and purchasing them is more cost-effective than in-house
innovation, the firm could simply acquire them and pay the prices. Nevertheless, there exist scenarios
wherein firms choose to undertake internal innovation, which may occur when (1) firms have highly spe-
cific production processes and automation needs and they can not find the automated assets in the market;
(2) the prevailing market prices for machinery and equipment are exorbitant.

41I use a more relaxed set of fixed effects relative to analyses in Table 4 considering the scarcity of automation-
related patents across firms.
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economic magnitudes are also large. In column (9), the probability of filling an automa-

tion patent increases by 4.0% for firms with temperature exposure at the 75th percentile

and by 6.1% for firms with the highest exposure. Detailed estimations of the economic

effects for firms in each exposure category are reported in Table IF.4 and Figure IF.1.

To conclude, this section provides consistent and robust evidence supporting the hy-

pothesis that firms enhance automation in response to the escalating risks associated with

high temperatures that lower the efficiency of exposed labor as a production input.

7 Implications

In the last step of my analysis, I explore the broad implications of firms’ adaptation to cli-

mate change through automation, with a focus on firms’ resilience to temperature threats

and the macro-level consequences for industry dynamics.

7.1 Firm Resilience

An alternative approach to testing the hypothesis that firms utilize automation to address

temperature challenges is examining their resilience to heat shocks, taking into account

the capital intensity of their existing production functions. Put differently, firms with a

higher degree of automation should exhibit greater resilience to unexpected high tem-

peratures, assuming that automation effectively mitigates labor-related heat challenges.

I test this conjecture in Internet Appendix Section G Table IG.1. Specifically, I divided

firms into two subsamples: those with capital-labor ratios below the sample median and

those with capital-labor ratios above the median. Supporting my prediction, I find that

that the negative effects of heat shocks on labor productivity manifest only among firms

with below-median capital-labor ratios. This evidence demonstrates that automation is

an effective adaptation strategy to mitigate labor-related climate threats.
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7.2 Industry Dynamics

While the negative effects of high temperatures on employment mainly concentrate in

small plants, the impact may add up to an economically important magnitude that leads

to industry-wide employment contraction. Put differently, industries that are highly sus-

ceptible to heat in hot areas might experience slower growth. I test this conjecture on

industry dynamics using the QCEW data on employment and wages at the county-by-

NAICS4 industry level. Table 8 presents the results.42 I use total employment to proxy for

the size of a NAICS4 industry in a county. I observe a negative and statistically significant

coefficient for the interaction term 1 (Realized ≫ Expected) (M) × Labor Exposure, implying

that, within a county, high-exposure industries exhibit considerably slower growth rates

compared to their low-exposure counterparts following heat shocks. The results are more

pronounced when focusing on smaller industries, i.e., employment size smaller than 800

or 400.43 The employment level is about 0.06% lower for a one-unit increase in labor ex-

posure after heat shocks in column (1), equivalent to a 0.6% drop moving from industries

with labor exposure at the 25th percentile to industries with labor exposure at the 75th

percentile. The effects are larger when using total wages to proxy for industry size in

Internet Appendix Table IG.3. Total wages drop by 0.1% for a one-unit increase in labor

exposure, equivalent to 1% when moving from industries with labor exposure at the 25th

percentile to industries with labor exposure at the 75th percentile. Overall, these findings

suggest that climate change leads to the contraction of high-exposure industries in hot

areas, further supporting my hypothesis on automation.

42Summary statistics of the sample are presented in Internet Appendix Table IG.2.
43The mean, the median, and the 75th percentile of industry-level employment in a county are 1008, 336, and

804, respectively.
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8 Conclusions

Climate change has constantly been pushing up global temperatures, creating enormous

challenges to human and economic activities. Outdoor workers are among those who

are most affected. Not only their health but also their lives are under significant threats.

Considering that human capital is key to firms’ production, not paying enough attention

to the threats causes material risks to firms. This paper looks into these risks and calls for

more attention to the health issues of outdoor workers in the transition to a warmer era.

How do high temperatures affect the productivity of exposed workers and firms? To

answer this question, I utilize information on each occupation’s exposure to extreme heat

and construct a measure reflecting firms’ exposure to climate risk through a labor channel.

Consistent with the physical risk mechanism of high temperatures, both firm-level and

plant-level evidence show that unexpected extreme heat significantly reduces corporate

labor productivity through the labor channel. On average, labor productivity of firms

with labor exposure at the 75th percentile drops by 1.9% following heat shocks.

Given the reduction in the efficiency of labor relative to capital in production during

high temperatures, how should firms adapt? I argue that firms could resort to automa-

tion, i.e., replacing exposed labor with automated capital assets such as computers, equip-

ment, machines, and robots. To implement this strategy, firms will shift towards more

capital-intensive production functions, i.e., reducing the use of labor while increasing the

use of capital. Consistent with this conjecture, I find that following high heat shocks, firms

increase capital utilization in production, reduce employment in small plants, invest more

in robotics-related human capital, and develop more automation-related technology. To-

gether, these findings indicate that climate change promotes automation and speeds up

our entering into a capital-intensive economy.

An important implication of my findings is that climate change leads to significant

job and income losses for exposed workers. This is further confirmed in the industry-
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wide evidence that heat exposure through the labor channel negatively affects the size

and growth of high-exposure industries in hot areas, echoing various scientific evidence

predicting increasing economic losses as global warming intensifies. The evidence also

reveals unexpected negative effects of firms’ adaptation to climate change on workers

and local communities. Future works could further explore broad implications of the la-

bor channel for other economic agents, such as banks, entrepreneurs, households, and

institutional investors.
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Figures

Figure 1. Distribution of Heat Shocks in the Continental U.S.

These figures present the annual number of days with heat shocks (max temperatures exceed the
90th percentile threshold during summer) for each county in the continental U.S. in 2000, 2006,
2009, 2012, 2015 and 2018.

(A) (B)

(C) (D)

(E) (F)
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Figure 2. Treatment Effects of Heat Shocks on Labor Productivity

This figure presents the treatment effects of short-term heat shocks on firm-level labor productivity
by labor exposure category, based on the estimation in column (5) of Table 2 and Table IE.1.
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Figure 3. Dynamic Treatment Effects of Heat Shocks on Labor Productivity

This figure presents the dynamic treatment effects of short-term heat shocks on firm-level labor
productivity, based on the estimation in Table IE.1 Panel B.
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Figure 4. Treatment Effects of Heat Shocks on Capital Utilization in Production

These figures present the treatment effects of medium-term heat shocks on capital utilization in
production by labor exposure category. Figure (A) presents the estimate on total capital and Figure
(B) presents the estimate on total capital per employee. These figures are based on estimations in
Table 4 columns (4) and (8) and Table IF.1.

(A) Capital Stock - Log(Capital)

(B) Capital-labor Ratio - Log(Capital/Emp)
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Figure 5. Treatment Effects of Heat Shocks on Employment Practices
These figures present the treatment effects of medium-term heat shocks on firms’ employment
practices by labor exposure category. Figure (A) examines firms’ investments in robotics-related
human capital, based on the estimation in Table 6 Panel B column (2) and Table IF.2. Figure (B)
examines changes in total employment of small plants, based on the estimation in Table 6 Panel C
column (7) and Table IF.3.

(A) Investments in Robotics-related Human Capital

(B) Employment of Small Plants
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Tables

Table 1. Summary Statistics

This table presents summary statistics of variables used in empirical analyses. Panel A
presents firm-level statistics and Panel B presents plant-level statistics. See Internet Appendix
A for definitions of variables. The sample period is from 1999 to 2019, except that “Automation
Patents” is available for 1999 - 2014 and “Human Capital - Robotics” is available for 2010 - 2018.

N Mean P5 Median P95 SD

Panel A. Firm Level

Log(Sale/Emp) 60,129 4.144 2.627 4.100 5.879 0.835
Log(Capital) 60,384 4.914 1.692 4.827 8.538 1.902
Log(Capital/Emp) 60,384 4.364 2.080 4.294 7.007 1.311
Log(Capital Investment Rate) 57,185 -2.627 -4.312 -2.564 -1.111 1.001
Log(Emp) 61,478 0.508 -2.313 0.432 3.829 1.787
Human Capital - Robotics 10,349 0.132 0 0 0.990 .409
Automation Patent 44,793 0.232 0.000 0.000 1.000 0.422
1 (Realized ≫ Expected) 60,129 0.186 0.000 0.000 1.000 0.389
1 (Realized ≫ Expected) (M) 61,478 0.274 0.000 0.000 1.000 0.446
Labor Exposure (Industry) 61,478 7.833 1.000 6.000 18.000 5.533
Labor Exposure (Firm) 61,478 8.550 1.000 8.000 18.000 5.183
Size 61,478 6.244 3.275 6.160 9.630 1.802
M/B 61,173 1.645 0.497 1.241 4.863 1.153
Book Leverage 61,217 0.232 0.000 0.199 0.672 0.207
Cash 61,476 0.189 0.004 0.109 0.678 0.200
Dividend Payer 61,478 0.393 0.000 0.000 1.000 0.488

Panel B. Plant Level

Log(Sale/Emp) 2,788,930 5.104 3.774 5.100 6.888 0.901
Log(Emp) 2,788,930 4.333 2.996 4.127 6.397 1.027
1 (Realized ≫ Expected) 2,788,930 0.225 0.000 0.000 1.000 0.418
1 (Realized ≫ Expected) (M) 2,788,930 0.299 0.000 0.000 1.000 0.458
Labor Exposure (Industry) 2,788,930 10.169 2.000 9.000 19.000 5.082
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Table 2. Heat Shocks and Firm-level Labor Productivity

This table presents the treatment effects of short-term heat shocks on firm-level labor productivity. Columns (1) - (5) use the industry-level
measure of labor exposure to climate risk (Equation (4)) and columns (6) - (10) use the firm-level measure (Equation (5)). The dependent variable is
the natural logarithm of a firm’s sales per employee (Log(Sales/Emp)). The key independent variables are a firm’s labor exposure to climate risk (Labor
Exposure), a dummy indicating short-term heat shocks (1 (Realized ≫ Expected)), and an interaction term of the two (1 (Realized ≫ Expected) × Labor
Exposure). Controls include the logarithm of total assets (Size), market-to-book ratio (M/B), book leverage (Book Leverage), cash holdings (Cash), and a
dummy indicating that a firm pays dividends (Dividend Payer). The sample period is from 1999 to 2019. Numbers in parentheses are standard errors.
Standard errors are clustered at the NAICS4 level in columns (1) - (5) and the firm level in columns (6) - (10). ***, **, and * indicate p-values of 1%, 5%,
and 10%, respectively.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Log(Sales/Emp)

Industry-level Labor Exposure Firm-level Labor Exposure

1 (Realized ≫ Expected) -0.002 0.015* 0.016 0.012 0.013 -0.002 0.013 0.015 0.012 0.014
(0.006) (0.009) (0.010) (0.010) (0.011) (0.005) (0.009) (0.010) (0.009) (0.010)

Labor Exposure 0.007** 0.007*** 0.001 0.004*** 0.004*** 0.002 0.003**
(0.003) (0.003) (0.002) (0.001) (0.001) (0.001) (0.001)

1 (Realized ≫ Expected) x Labor Exposure -0.002*** -0.002*** -0.002** -0.002** -0.002** -0.002** -0.002* -0.002**
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

Observations 58,711 58,711 54,489 54,399 53,494 59,548 59,548 55,313 55,226 54,298
Controls Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
State x Year FE Yes Yes No No No Yes Yes No No No
County x Year FE No No Yes Yes Yes No No Yes Yes Yes
County x NAICS2 FE No No No Yes Yes No No No Yes Yes
NAICS2 x Year FE No No No Yes No No No No Yes No
NAICS4 x Year FE No No No No Yes No No No No Yes
Adjusted R2 0.858 0.858 0.859 0.871 0.876 0.856 0.856 0.857 0.868 0.873

Treatment Effect for 1 (Realized ≫ Expected) × Labor Exposure

Labor Exposure=15 -0.016** -0.020** -0.015* -0.019** -0.012* -0.016** -0.012* -0.016**
(0.007) (0.008) (0.008) (0.008) (0.007) (0.008) (0.007) (0.008)

Labor Exposure=20 -0.027*** -0.032*** -0.023** -0.030*** -0.021** -0.026** -0.019* -0.026**
(0.009) (0.010) (0.010) (0.011) (0.009) (0.011) (0.010) (0.011)
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Table 3. Heat Shocks and Plant-level Labor Productivity

This table presents the treatment effects of short-term heat shocks on plant-level labor productivity. This sample is at the firm-by-county-by-
NAICS4-by-year level using the YTS data. The dependent variable is the natural logarithm of sales per employee (Log(Sales/Emp)). The key
independent variables are a plant’s labor exposure to climate risk (Labor Exposure), a dummy indicating heat shocks (1 (Realized ≫ Expected)), and an
interaction term of the two (1 (Realized ≫ Expected) × Labor Exposure). The sample period is from 1999 to 2019. Numbers in parentheses are standard
errors. Standard errors are double clustered at the NAICS4 and the county levels. ***, **, and * indicate p-values of 1%, 5%, and 10%, respectively.

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Log(Sales/Emp)

1(Realized ≫ Expected) -0.0001 0.0037*** -0.0002 0.0022**
(0.0005) (0.0013) (0.0004) (0.0011)

Labor Exposure 0.0007 0.0003 0.0007 0.0003 0.0012 0.0013 0.0036*
(0.0008) (0.0011) (0.0008) (0.0011) (0.0017) (0.0011) (0.0020)

1 (Realized ≫ Expected) x Labor Exposure -0.0004*** -0.0002** -0.0004*** -0.0002** -0.0003*** -0.0012*** -0.0012***
(0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0003) (0.0003)

Observations 2,786,839 2,786,839 2,773,205 2,773,205 2,782,878 2,769,222 2,769,217 560,898 560,864
NAICS4 FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
NAICS2 x Year FE Yes Yes Yes Yes Yes Yes No Yes No
County x NAICS2 FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
Firm FE Yes Yes No No Yes No No No No
Firm x Year FE No No Yes Yes No Yes Yes No No
County x Year FE No No No No Yes Yes Yes No No
NAICS3 x Year FE No No No No No No Yes No Yes
Firm x County x Year FE No No No No No No No Yes Yes
Adjusted R2 0.929 0.929 0.933 0.933 0.928 0.932 0.933 0.885 0.886

Treatment Effect for 1 (Realized ≫ Expected) × Labor Exposure

Labor Exposure=15 -0.0018** -0.0013**
(0.0009) (0.0006)

Labor Exposure=20 -0.0037** -0.0025**
(0.0015) (0.0010)
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Table 4. Heat Shocks and Capital Utilization in Production

This table presents the treatment effects of medium-term heat shocks on firm-level capital utilization in production. The dependent variables
are the natural logarithm of total capital Log(Capital) in columns (1) - (4) and the natural logarithm of total capital per employee Log(Capital/Emp) in
columns (5) - (8). Total capital is the sum of a firm’s property, plant, and equipment (PPENT) and its R&D stock. R&D stock is the sum of a firm’s past
R&D expenses, assuming a 20% depreciation rate. The key independent variables are the industry-level measure of a firm’s labor exposure to climate
risk (Labor Exposure), a dummy indicating medium-term heat shocks (1 (Realized ≫ Expected) (M)), and an interaction term of the two (1 (Realized
≫ Expected) (M) × Labor Exposure). Controls include the logarithm of total assets (Size), market-to-book ratio (M/B), book leverage (Book Leverage),
cash holdings (Cash), and a dummy indicating that a firm pays dividends (Dividend Payer). The sample period is from 1999 to 2019. Numbers in
parentheses are standard errors. Standard errors are clustered at the NAICS4 level. ***, **, and * indicate p-values of 1%, 5%, and 10%, respectively.

(1) (2) (3) (4) (5) (6) (7) (8)

Log(Capital) Log(Capital/Emp)

1 (Realized ≫ Expected) (M) 0.006 -0.013 -0.019** -0.013 0.002 -0.025** -0.030*** -0.018*
(0.006) (0.008) (0.009) (0.009) (0.007) (0.010) (0.010) (0.010)

Labor Exposure -0.001 -0.002 -0.004 0.003 0.004 -0.005*
(0.002) (0.003) (0.003) (0.003) (0.003) (0.003)

1 (Realized ≫ Expected) (M) x Labor Exposure 0.003*** 0.003*** 0.003*** 0.004*** 0.004*** 0.002**
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

Observations 59,082 59,082 54,887 54,787 59,082 59,082 54,887 54,787
Controls Yes Yes Yes Yes Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes Yes Yes Yes Yes
State x Year FE Yes Yes No No Yes Yes No No
County x Year FE No No Yes Yes No No Yes Yes
County x NAICS2 FE No No No Yes No No No Yes
NAICS2 x Year FE No No No Yes No No No Yes
Adjusted R2 0.971 0.971 0.971 0.973 0.935 0.935 0.937 0.943

Treatment Effect for 1 (Realized ≫ Expected) (M) × Labor Exposure

Labor Exposure=15 0.026*** 0.027*** 0.026*** 0.029*** 0.026** 0.016*
(0.009) (0.010) (0.010) (0.009) (0.010) (0.009)

Labor Exposure=20 0.038*** 0.043*** 0.039*** 0.047*** 0.044*** 0.028**
(0.012) (0.014) (0.014) (0.013) (0.014) (0.013)
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Table 5. Heat Shocks and Capital Utilization in Production: Heterogeneities

This table presents cross-sectional heterogeneities in the treatment effects of medium-term heat shocks on firm-level capital utilization in pro-
duction. Column (1) - (4) examine long-term temperature projections, columns (5) - (8) examine labor unions, and columns (9) - (12) examine labor
skills. ‘High’ and ‘Low’ denote high and low levels in each of the above dimensions, respectively. The dependent variable is the natural logarithm
of total capital per employee, Log(Capital/Emp). Total capital is the sum of a firm’s property, plant, and equipment (PPENT) and its R&D stock.
R&D stock is the sum of a firm’s past R&D expenses, assuming a 20% depreciation rate. The key independent variables are a firm’s labor exposure
to climate risk (Labor Exposure), a dummy indicating medium-term heat shocks (1 (Realized ≫ Expected) (M)), and an interaction term of the two (1
(Realized ≫ Expected) (M) × Labor Exposure). Controls include the logarithm of total assets (Size), market-to-book ratio (M/B), book leverage (Book
Leverage), cash holdings (Cash), and a dummy indicating that a firm pays dividends (Dividend Payer). The sample period is from 1999 to 2019.
Numbers in parentheses are standard errors. Standard errors are clustered at the NAICS4 level. ***, **, and * indicate p-values of 1%, 5%, and 10%,
respectively.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Log(Capital/Emp)

Temperature Projections Labor Union Labor Skill

High Low High Low High Low

1 (Realized ≫ Expected) (M) -0.035** -0.031* -0.027 -0.022 -0.022 -0.017 -0.008 0.002 -0.025 -0.023 -0.036** -0.020
(0.017) (0.017) (0.022) (0.020) (0.017) (0.017) (0.019) (0.019) (0.017) (0.017) (0.017) (0.016)

Labor Exposure 0.003 -0.001 0.002 -0.004 0.003 -0.001 0.002 -0.004 -0.002 -0.014*** 0.006 0.003
(0.004) (0.004) (0.004) (0.005) (0.005) (0.004) (0.006) (0.004) (0.007) (0.005) (0.004) (0.004)

1 (Realized ≫ Expected) (M) x Labor Exposure 0.004*** 0.004** 0.003 0.002 0.004** 0.003** 0.002 0.000 0.002 0.002 0.004*** 0.003**
(0.002) (0.002) (0.002) (0.002) (0.002) (0.001) (0.001) (0.002) (0.002) (0.002) (0.001) (0.001)

Observations 19,488 19,470 20,003 19,983 21,367 21,351 21,884 21,797 23,017 23,009 29,703 29,703
Controls Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
County x Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
NAICS2 x Year FE No Yes No Yes No Yes No Yes No Yes No Yes
Adjusted R2 0.949 0.952 0.928 0.930 0.937 0.939 0.948 0.952 0.936 0.938 0.941 0.944

Treatment Effect for 1 (Realized ≫ Expected) (M) × Labor Exposure

Labor Exposure=15 0.031** 0.024* 0.035** 0.027** 0.31** 0.021
(0.013) (0.014) (0.014) (0.013) (0.014) (0.013)

Labor Exposure=20 0.053*** 0.042** 0.054** 0.042** 0.053*** 0.035*
(0.019) (0.020) (0.021) (0.019) (0.019) (0.018)
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Table 6. Heat Shocks and Employment Practices

This table presents the treatment effects of medium-term heat shocks on employment practices.
Panel A presents analyses of firm-level total employment. Panel B presents analyses of firm-level invest-
ments in robotics-related human capital, measured using job postings that require robotics-related skills.
Panel C presents analyses of plant-level total employment. Columns labeled with “Full Sample" represent
analyses using the full-sample data. Columns labeled with “Temperature Projections" represents analyses
using firms operated in counties with significant projected long-term temperature increases. Columns
labeled with “Labor Union” represent analyses using firms in industries with high unionization rates.
Columns labeled with “Labor Skill” represent analyses using firms that predominately employ low-skilled
workers. Columns labeled with “EMP ≤ 50 represent analyses using plants with 50 employees or fewer.
In Panel A and C, the dependent variable is the natural logarithm of total employment (Log(Emp)). In
Panel B, the dependent variable is fraction of a firm’s robotics-related job postings, provided by Babina
et al. (2024). The key independent variables are a firm’s labor exposure to climate risk (Labor Exposure), a
dummy indicating heat shocks (1 (Realized ≫ Expected) (M)), and an interaction term of the two (Realized
≫ Expected) (M) × Labor Exposure). Controls in Panel A and B include the logarithm of total assets (Size),
market-to-book ratio (M/B), book leverage (Book Leverage), cash holdings (Cash), and a dummy indicating
that a firm pays dividends (Dividend Payer). Panel C controls for Log(Emp) at t − 3 as a proxy for plant
size. The sample period is from 1999 to 2019 in Panel A and C, and from 2010 to 2018 in Panel B. Numbers
in parentheses are standard errors. In Panel A and B, standard errors are clustered at the NAICS4 level.
In Panel C, standard errors are double clustered at the NAICS4 and county levels. ***, **, and * indicate
p-values of 1%, 5%, and 10%, respectively.
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Panel A. Firm-level Total Employment

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Log(Emp)

Full Sample Temperature Projections Labor Union Labor Skill

1 (Realized ≫ Expected) (M) 0.000 0.006 0.003 0.002 -0.012 0.009 -0.001 0.016 0.010
(0.006) (0.009) (0.009) (0.016) (0.015) (0.012) (0.011) (0.015) (0.014)

Labor Exposure -0.005** 0.001 -0.003 0.001 -0.001 0.000 -0.007** -0.004
(0.002) (0.002) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003)

1 (Realized ≫ Expected) (M) x Labor Exposure -0.001 -0.000 -0.001 0.001 -0.002 -0.000 -0.002* -0.001
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

Observations 60,167 60,167 60,167 22,314 22,296 24,647 24,619 34,758 34,758
Controls Yes Yes Yes Yes Yes Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
State x Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
NAICS2 x Year FE No No Yes No Yes No Yes No Yes
Adjusted R2 0.975 0.975 0.976 0.977 0.979 0.979 0.980 0.976 0.977

Treatment Effect for 1 (Realized ≫ Expected) (M) × Labor Exposure

Labor Exposure=15 -0.016*
(0.009)

Labor Exposure=20 -0.027**
(0.013)
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Panel B.Firm-level Investments in Robotics-related Human Capital

(1) (2) (3) (4)
Human Capital - Robotics

1 (Realized ≫ Expected) (M) 0.005 -0.026 -0.020 -0.021
(0.013) (0.016) (0.016) (0.017)

Labor Exposure -0.002 0.001 0.000
(0.004) (0.005) (0.006)

1 (Realized ≫ Expected) (M) x Labor Exposure 0.005*** 0.004** 0.004**
(0.001) (0.002) (0.002)

Observations 9,870 9,870 9,917 9,870
Controls Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes
State x Year FE Yes Yes No Yes
NAICS2 x Year FE No No Yes Yes
Adjusted R2 0.523 0.524 0.520 0.521

Treatment Effect for 1 (Realized ≫ Expected) (M) × Labor Exposure
Labor Exposure=15 0.043** 0.036** 0.035*

(0.017) (0.018) (0.020)
Labor Exposure=20 0.066*** 0.055** 0.054**

(0.023) (0.025) (0.027)
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Panel C. Plant-level Total Employment

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

Log(Emp)

Full Sample Emp ≤ 50 Emp ≤ 50

Temperature Projections Labor Union Labor Skill

1(Realized ≫ Expected) (M) -0.0042*** -0.0042 -0.0017 -0.0013 0.0057** 0.0054** 0.0067 0.0025 0.0050
(0.0016) (0.0034) (0.0033) (0.0014) (0.0023) (0.0027) (0.0051) (0.0048) (0.0041)

Labor Exposure 0.0001 0.0052 0.0017 -0.0008 0.0020 -0.0009 -0.0008 -0.0023 0.0028*
(0.0020) (0.0041) (0.0024) (0.0007) (0.0014) (0.0007) (0.0017) (0.0018) (0.0016)

1 (Realized ≫ Expected) (M) x Labor Exposure -0.0000 -0.0003 -0.0000 -0.0007*** -0.0007*** -0.0008*** -0.0008** -0.0006* -0.0006*
(0.0004) (0.0004) (0.0004) (0.0002) (0.0002) (0.0002) (0.0004) (0.0004) (0.0003)

Observations 1,195,249 1,195,249 1,185,130 1,190,612 453,586 453,586 446,026 446,530 219,307 147,626 366,881
Controls Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
NAICS4 FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
NAICS2 x Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
County FE Yes Yes Yes No Yes Yes Yes No Yes Yes Yes
Firm FE Yes Yes No Yes Yes Yes No Yes No No No
Firm x Year FE No No Yes No No No Yes No Yes Yes Yes
County x Year FE No No No Yes No No No Yes No No No
Adjusted R2 0.855 0.855 0.867 0.854 0.373 0.373 0.386 0.353 0.408 0.328 0.417

Treatment Effect for 1 (Realized ≫ Expected) (M) × Labor Exposure

Labor Exposure=15 -0.0051*** -0.0053*** -0.0052** -0.0066*** -0.0044***
(0.0015) (0.0015) (0.0026) (0.0020) (0.0016)

Labor Exposure=20 -0.0088*** -0.0088*** -0.0091** -0.0096*** -0.0076**
(0.0024) (0.0025) (0.0039) (0.0032) (0.0031)
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Table 7. Heat Shocks and Automation Technology

This table presents the treatment effects of medium-term heat shocks on firms’ development of automation-related technology.
Columns (1) - (3) use the medium-term heat shocks (1 (Realized ≫ Expected) (M)). Columns (4) - (6) further require at least 100 absolute hot
days (i.e., temperatures above 30◦C). Columns (7) - (9) further require at least 120 absolute hot days (i.e., temperatures above 30◦C). The
key independent variable is a dummy indicating that a firm files at least one automation-related patent in a year (Automation Patent). The
key independent variables are a firm’s labor exposure to climate risk (Labor Exposure), a dummy indicating medium-term heat shocks (1
(Realized ≫ Expected) (M)), and an interaction term of the two (1 (Realized ≫ Expected) (M) × Labor Exposure). Controls include the logarithm
of total assets (Size), market-to-book ratio (M/B), book leverage (Book Leverage), cash holdings (Cash), and a dummy indicating that a firm
pays dividends (Dividend Payer). The sample period is from 1999 to 2014. Numbers in parentheses are standard errors. Standard errors are
clustered at the NAICS4 level. ***, **, and * indicate p-values of 1%, 5%, and 10%, respectively.

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Automation Patent

1 (Realized ≫ Expected) 1 (Realized ≫ Expected) & Days 30◦C ≥ 100 1 (Realized ≫ Expected) & Days 30◦C ≥ 120

1 (Realized ≫ Expected) (M) 0.002 -0.005 -0.005 0.003 -0.006 -0.006 0.001 -0.012 -0.010
(0.004) (0.005) (0.006) (0.004) (0.007) (0.008) (0.004) (0.008) (0.008)

Labor Exposure -0.001 0.000 -0.001 -0.000 -0.001 -0.000
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

1 (Realized ≫ Expected) (M) x Labor Exposure 0.001** 0.001 0.001** 0.001 0.002*** 0.001*
(0.000) (0.000) (0.001) (0.001) (0.001) (0.001)

Observations 43,692 43,692 43,692 43,692 43,692 43,692 43,692 43,692 43,692
Controls Yes Yes Yes Yes Yes Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes No Yes Yes No Yes Yes No
NAICS2 x Year FE No No Yes No No Yes No No Yes
Adjusted R2 0.641 0.641 0.648 0.641 0.641 0.648 0.641 0.641 0.648

Treatment Effect for 1 (Realized ≫ Expected) (M) × Labor Exposure

Labor Exposure=15 0.009** 0.005 0.011** 0.006 0.012** 0.008*
(0.005) (0.004) (0.005) (0.004) (0.005) (0.005)

Labor Exposure=20 0.014** 0.008 0.017** 0.010 0.021** 0.014**
(0.006) (0.006) (0.007) (0.006) (0.007) (0.007)
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Table 8. Heat Shocks and Industry Dynamics

This table presents the treatment effects of medium-term heat shocks on industry dynamics across counties. The size of a NAICS4
industry in a county is measured using total employment from the QCEW data. The dependent variable are the natural logarithm of total
employment (Log(Emp), columns (1) - (3)), the annual change in the natural logarithm of total employment (∆ Log(Emp), columns (4) - (6)),
and the employment share ((Emp Share), columns (7) - (9)). The key independent variables are an industry’s labor exposure to climate risk
(Labor Exposure), a dummy indicating medium heat shocks in a county (1 (Realized ≫ Expected) (M)), and an interaction term of the two (1
(Realized ≫ Expected) (M) × Labor Exposure). Columns (1) - (3) controls for Log(Emp) at t − 3 as a proxy for industry size. The sample period
is from 1999 to 2019. Numbers in parentheses are standard errors. Standard errors are double clustered at the NAICS4 and the county
levels. ***, **, and * indicate p-values of 1%, 5%, and 10%, respectively.

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Log(Emp) ∆ Log(Emp) Emp Share

Full Sample EMP≤800 EMP≤400 Full Sample EMP≤800 EMP≤400 Full Sample EMP≤800 EMP≤400

1 (Realized ≫ Expected) (M) x Labor Exposure -0.0006** -0.0006** -0.0007*** -0.0003*** -0.0003*** -0.0003*** -0.0004 -0.0010 -0.0012*

(0.0003) (0.0003) (0.0002) (0.0001) (0.0001) (0.0001) (0.0008) (0.0007) (0.0007)

Observations 1,379,550 1,009,246 730,540 1,614,263 1,196,530 880,603 1,741,911 1,300,556 966,013

Controls Yes Yes Yes No No No No No No

County x Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes

County x NAICS4 FE Yes Yes Yes Yes Yes Yes Yes Yes Yes

Adjusted R2 0.962 0.877 0.781 0.0606 0.0486 0.0429 0.972 0.975 0.980
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A Variable Definitions

Variables Description

Dependent Variables

Log(Sales/Emp) The natural logarithm of sales per employee. The firm-level variable uses
sales from the quarterly Compustat/CRSP Merged data and employment
from the annual Compustat/CRSP Merged data. The plant-level vari-
able uses annual sales and employment from the YTS data at the firm-by-
county-by-NAICS4 level.

Log(Capital) The natural logarithm of total capital. Total capital is the sum of a firm’s
property, plant, and equipment (PPENT) and its R&D stock. R&D stock is
the sum of a firm’s historical R&D expenses, assuming a 20% depreciation
rate.

Log(Capital/Emp) The natural logarithm of total capital scaled by the number of employees.
Log(Emp) The natural logarithm of the number of employees. The firm-level vari-

able uses employment from the annual Compustat/CRSP Merged data.
The plant-level variable uses employment from the YTS data at the firm-
by-county-by-NAICS4 level. The industry-level variable uses employment
from the QCEW data at the county-by-NAICS4 level.

Human Capital - Robotics The fraction of a firm’s robotics-related job postings, provided by Babina
et al. (2024).

Automation Patent A dummy indicating that a firm files at least one automation patent in a
year. The classification of automation-related patents is from Mann and
Püttmann (2023).

∆ Log(Emp) The annual change in the natural logarithm of the number of employees.
This industry-level variable uses employment from the QCEW data at the
county-by-NAICS4 level.

Emp Share The share of employment in an industry relative to total employment in
a county. This industry-level variable uses employment from the QCEW
data at the county-by-NAICS4 level.

Key Independent Variables

1 (Realized ≫ Expected) A dummy indicating a short-term heat shock at the county or the firm
level. The county-level measure is defined in Equation (1). Heat shocks
are measured using temperatures at t relative to the 90th percentile of his-
torical temperatures in the same county and month from 1981 to t − 1,
with a maximum of 30 years. The identification threshold is 15 days, rel-
ative to the benchmark (expectation) 10 days. The firm-level measure is
the employment-weighted average of the county-level measure, defined in
Equation (2). The employment data is from the YTS.
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Variables Description

Key Independent Variables

1 (Realized ≫ Expected) (M) A dummy indicating a medium-term heat shock at the county or the
firm level. The medium-term heat shock is measured in the same way as
1 (Realized ≫ Expected) but using temperatures from t − 3 to t. The iden-
tification threshold is 45 days, relative to the benchmark (expectation) 40.

Labor Exposure A rank variable of labor exposure to climate risk from 1 to 20, with 20 in-
dicating the highest exposure, at the NAICS4 industry or the firm level.
The industry-level measure is a weighted average of all occupations’ ex-
posure to changing climates in a four-digit NAICS industry, defined in
Equation (4). The occupational exposure score is from the O*NET pro-
gram. The weight is the percentage of employees working in a given
occupation in an industry from the OEWS data. The firm-level measure
is a weighted average of the industry-level measure, defined in Equa-
tion (5). The weight is the percentage of a firm’s employees working in a
NAICS4 industry from the YTS data.

Other Independent Variables

Size The logarithm of a firm’s total assets (AT).

MB The market value of assets (prcc_f × csho + dlc + dltt) divided by the
book value of assets (AT).

Book Leverage The book value of long-term debt (DLTT) plus debt in current liabilities
(DLC) divided by total assets (AT).

Cash Cash and short-term investments (CHE) divided by total assets (AT).

Dividend Payer A dummy indicating that a firm pays dividends (DVC & DVP).
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B Anecdotal Evidence of Heat Threats to Exposed Workers
In this section, I present several pieces of anecdotal evidence from multiple sources high-

lighting the significant heat risks faced by field workers as a result of climate change.

[1] Extreme Heat and Unprotected Workers

Public Citizen, 2018

[2] Extreme Heat: The Economic and Social Consequences for the United States

Adrienne Arsht – Rockefeller Foundation Resilience Center, 2021

[3] FACT SHEET: Biden Administration Mobilizes to Protect Workers and Communi-

ties from Extreme Heat

The White House, 2021

[4] Heat Is Killing Workers in the U.S. — And There Are No Federal Rules to Protect

Them

Julia Shipley, Brian Edwards, David Nickerson, Robert Benincasa, Stella M. Chávez,

Cheryl W. Thompson, NPR News, 2021.

[5] Too Hot To Work: Assessing The Threats Climate Change Poses to Outdoor Workers

Kristina Dahl and Rachel Licker, Union of Concerned Scientists, 2021

[6] Too Hot To Work: The Dire Impact of Extreme Heat on Outdoor US Jobs

Aliya Uteuova and Andrew Witherspoon, The Guardian, 2021

[7] How Rising Temperatures Are Becoming a Labor Story

Steven Greenhouse, Nieman Reports, 2023.

[8] Extreme Heat Is Endangering America’s Workers—and Its Economy

Aryn Baker, Time, 2023

[9] Workers Exposed to Extreme Heat Have Few Protections

Noah Weiland, The New York Times, 2023

[10] When Is It Too Hot to Work Outside?

Adolfo Flores and Dan Frosch, The Wall Street Journal, 2023

[11] What Happens When It Is Too Hot To Work?

The Economist, 2023
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https://www.citizen.org/article/extreme-heat-and-unprotected-workers/
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https://www.whitehouse.gov/briefing-room/statements-releases/2021/09/20/fact-sheet-biden-administration-mobilizes-to-protect-workers-and-communities-from-extreme-heat/
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https://www.wsj.com/articles/when-is-it-too-hot-to-keep-working-in-most-states-companies-decide-9797ae18
https://www.economist.com/graphic-detail/2023/12/05/what-happens-when-it-is-too-hot-to-work


C Labor Exposure to Climate Risk
C.1 Data and Measure Construction

This section provides an overview of the raw datasets used for constructing the measure

of labor exposure to climate risk. Table IC.1 reports the versions and release dates of the

Occupational Employment and Wage Statistics (OEWS) and the Occupational Informa-

tion Network (O*NET) datasets used. The OEWS and the O*NET data are matched using

the Standard Occupational Classification (SOC) occupation code for 1999 - 2022.

C.1.1 Occupational Employment and Wage Statistics (OEWS)

The Bureau of Labor Statistics’s (BLS) Occupational Employment and Wage Statistics

(OEWS) produces employment and wage estimates for approximately 830 occupations

based on a survey of almost all industries from about 200,000 establishments in the U.S.

every six months. The survey covers wage and salary workers in nonfarm establishments

and does not include the self-employed, owners and partners in unincorporated firms,

household workers, or unpaid family workers. The publicly available OEWS datasets

include cross-industry occupational employment and wage estimates for the nation and

over 580 areas (e.g., states and MSAs) and national industry-specific estimates.

Several points are worth noting. First, the OEWS data is available starting from 1988.

However, before 1997, the data were collected over three-year survey cycles. Annual

updates become available starting from 1997 with a May reference date. Second, occu-

pational classifications rely on the Dictionary of Occupational Titles (DOT) pre 1999 and

transition to the SOC system afterward. Third, industry classifications are based on the

SIC code before 2002 and the NAICS code from 2002 onwards.

C.1.2 The Occupational Information Network (O*NET) Program

The Occupational Information Network (O*NET) is a comprehensive database of worker

attributes and job characteristics, including workers’ abilities, skills, knowledge and ex-

perience, work values, work styles, work activities, etc. The O*NET Program replaces
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the Dictionary of Occupational Titles (DOT) and is currently the primary source of U.S.

occupational information. Data in O*NET is collected by surveying job incumbents using

questionnaires in a two-stage design in which (a) a statistically random sample of busi-

nesses expected to employ workers in the targeted occupations will be identified and (b) a

random sample of workers in those occupations within those businesses will be selected.

In addition, abilities and skills information is developed by occupational analysts using

the updated information from incumbent workers.

O*NET has been continuously updating occupational characteristics quarterly/semi-

annually since 2003 through ongoing surveys - “O*NET 5.0" to the latest version “O*NET

28.0". These updates allow researchers to track changes in a specific occupation’s charac-

teristics over time. In addition, O*NET also has a transitional database including “O*NET

4.0 (June 2002)", “O*NET 3.1 (June 2001)", “O*NET 3.0 (August 2000)", and “O*NET 98

(December 1998)". These datasets are not built on the current multi-method data collection

methodology featuring job incumbents, occupational experts, big data, and other sources.

Rather, O*NET 98 to O*NET 4.0 are populated using data supplied by occupational an-

alysts. Specifically, occupational analysts evaluate and refine the existing Dictionary of

Occupational Titles (DOT) data (e.g., the revised 4th edition) and then extrapolate these

data to the O*NET Content Model. I use the latest analyst estimates, O*NET 4.0, for anal-

yses before 2003 (1999 - 2002).

C.1.3 Occupational Exposure to High Temperatures

In the section on work context, O*NET has five elements that help capture workers’ heat

exposures while performing job tasks. The first element is “Outdoors, Exposed to Weather,"

based on the survey question “How often does this job require working outdoors, exposed to all

weather conditions?" The second is “Outdoors, Under Cover," associated with the question

“How often does this job require working outdoors, under cover (e.g., structure with roof but

no walls)?" The third is “Indoors, Environmentally Controlled" with the question “How often
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does this job require working indoors in environmentally controlled conditions?" The fourth is

“Indoors, Not Environmentally Controlled" with the question “How often does this job require

working indoors in non-controlled environmental conditions (e.g., warehouse without heat)?" The

last one is “Very Hot or Cold Temperatures" with the question “How often does this job require

working in very hot (above 90◦F degrees) or very cold (below 32◦F degrees) temperatures?"

In this study, I only use the first element (“Outdoors, Exposed to Weather") to quantify

labor exposure to heat risks. The reason is that this study focuses on workers’ expo-

sure to nature heat induced by climate change. This study does not consider workers’

exposure to heat generated during production processes, such as steel making, as such

production-induced heat is not caused by climate change and is endogenous to firms’ op-

erating activities. In line with this, I exclude the element “Very Hot or Cold Temperatures."

Additionally, I exclude the element “Indoors, Environmentally Controlled" because of

limited data on onsite climate controls and mixed evidence on how high temperatures

affect labor productivity in climate-controlled environments. For example, some studies

document that indoor workers in climate-controlled environments are well protected by

cooling machines like air conditioners. Consequently, high temperatures do not harm

these workers’ productivity (Somanathan et al., 2021). However, other studies show that

even with high-quality climate-controls available, high temperatures still negatively af-

fect individuals’ decision consistency and quality (Heyes and Saberian, 2019).

Further, I exclude “Outdoors, Under Cover" and “Indoors, Not Environmentally Con-

trolled" for three reasons. First, outdoor workers under cover are protected by the cover

and thus are less affected by temperatures relative to outdoor workers who are directly

exposed to all weather conditions. Second, the survey question for “Indoors, Not Envi-

ronmentally Controlled" tilts toward indoor non-hot conditions even without climate con-

trols - “warehouse without heat” in the survey question. Therefore, including this element

may bias my measure construction and estimation. Third, neither survey question was

available until 2006. I drop them to ensure the consistency in measure construction. Nev-
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ertheless, in additional robustness checks, I reconstruct the measure of labor exposure

by incorporating the three survey questions - “Outdoors, Exposed to Weather", “Outdoors,

Under Cover" and “Indoors, Not Environmentally Controlled." Results (untabulated) hold.

C.2 Distribution of Labor Exposure to Climate Risk
C.2.1 Across Sectors

Figure IC.1 presents the distribution of the industry-level labor exposure to climate risk

across different sectors. The x-axis represents NAICS2 sectors and the y-axis represents

the measure of labor exposure to climate risk. The dots denote the minimum, the 25th

percentile, the median, the 75th percentile, and the maximum of labor exposures across

NAICS4 industries in each sector.This figure yields four noteworthy observations. First,

in line with common experience, agriculture, mining, construction, transportation and

warehousing, and real estate and rental and leasing have large fractions of workers ex-

posed to climate risks. In contrast, sectors like management of companies and enterprises

and educational services have small fractions. Second, while the manufacturing sector is

widely explored in estimating the effects of high temperatures on economic activities in

prior studies, it’s not among those most exposed, implying that prior focus on manufac-

turing firms might underestimate the impact of climate change on labor productivity. This

is consistent with a recent report by Romanello et al. (2022) showing that heat-induced la-

bor productivity loss in manufacturing sectors is smaller than that in construction and

service sectors. Third, industries in wholesale trade and service sectors (i.e., arts, enter-

tainment, and recreation; administrative and support and waste management and remediation

services; other services (except public administration)) also have significant fractions of work-

ers exposed to climate threats, which indicates a broad impact of high temperatures on

the whole U.S. economy. Fourth, even within each sector, there are significant variations

of labor exposures across NAICS4 industries, suggesting that the measure does not sim-

ply capture sector-specific characteristics. This also highlights the importance of a more
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refined measure to quantify the labor channel and a significant improvement relative to

the sector-level measure in Graff Zivin and Neidell (2014).

Table IC.2 provides examples of industries with high, medium, or low exposures to

climate risk based on the value of Labor Exposure in 2015. As expected, high-exposure

industries are those that need the most outdoor workers, including logging, retail trans-

portation, basic chemical manufacturing, postal service, etc. Medium-exposure indus-

tries include furniture stores, amusement parks and arcades, employment services, steel

manufacturing, and plastic product manufacturing, etc. At the lower end of the spec-

trum, examples are advertising, accommodation, grocery stores, footwear manufactur-

ing, business support services, and personal care services. Furthermore, consistent with

patterns in Figure IC.1, within each exposure category — high, medium, or low — there is

a diverse distribution of sectors. For example, the high-exposure category spans various

major sectors, including agriculture, forestry, fishing, and hunting (NAICS2 11), mining,

quarrying, and oil and gas extraction (NAICS2 21), construction (NAICS2 23), manu-

facturing (NAICS 31-33), wholesale trade (NAICS 42), transportation and warehousing

(NAICS 48-49), administrative and support and waste management and remediation ser-

vices (NAICS 56), health care and social assistance (NAICS2 62), and other services (ex-

cept public administration) (NAICS2 81). This wide distribution of high-exposure indus-

tries across sectors underscores the extensive impact of high temperatures on the entire

economic landscape.

C.2.2 Across Labor Skill Levels

Figure IC.2 presents the distribution of the industry-level measure of labor exposure to

climate risk by labor skill levels. The x-axis represents labor skill levels ranging from 1

to 20, with 20 representing the most skilled workers. The dots represent the minimum,

the 25th percentile, the median, the 75th percentile, and the maximum of labor exposure

to climate risk across NAICS4 industries in each skill level. Consistent with expectation,
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there is a negative correlation between labor exposure to climate risk and labor skill, as

indicated by a correlation of -0.35. However, significant heterogeneities exist in labor

exposures across NAICS4 industries in each labor skill category, especially for skill levels

below 16. These patterns indicate that, although lower-skilled workers generally face

higher exposures to climate risks, a substantial number of higher-skilled workers are also

impacted.

C.2.3 Across Counties

Figure IC.3 presents the degree of labor exposure to climate risk for each U.S. county

in 2000, 2006, 2012, and 2018. The county-level exposure variable is calculated as the

employment-weighted average of the industry-level measure of labor exposure. The

weight is the number of employees working in a NAICS4 industry and a county from the

Quarterly Census of Employment and Wages (QCEW) data. Counties in white denote

those for which the QCEW data is not available. The figures indicate a relatively uniform

distribution of high-exposure workers and industries across the U.S., with a moderate

concentration in the central region. The extensive geographic spread of high-exposure

industries, together with the widespread and unpredictable distribution of temperature

fluctuations (Figure 1), further suggests that high temperatures have a comprehensive

impact on the U.S. economy, rather than an impact confined to specific areas.

C.3 Measure Validation

Prior studies have developed several measures of corporate exposures to climate condi-

tions by analyzing textual information in firm disclosures, such as annual reports (10-

K) and earnings conference calls. Notably, these measures are constructed in a compre-

hensive way by incorporating all climate-related information in disclosures. In contrast,

my measure utilizes occupational working contexts and thus focuses on exposures to

changing climates from a labor perspective only. On this point, my measure captures a

unique labor channel of firms’ exposure to climate change and, consequently, better ex-
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plains firms’ choices of production inputs from the labor aspect. Importantly, if the use

of outdoor workers in production significantly increases firms’ exposure to climate risk,

managers should discuss more issues related to climate change in earnings conference

calls and 10-Ks. Therefore, I expect a positive relation between my measure of labor ex-

posure to climate risk and exposure measures developed in the literature.

To validate my measure of labor exposure to climate risk, I first obtain data on firms’

exposure to weather from Nagar and Schoenfeld (2022), which gives the frequency count

of the term weather in firms’ 10-Ks. Instances where the word weather appears out-of-

context as a verb are excluded. Figure IC.4 (A) presents the correlation between my mea-

sure of labor exposure to climate risk and the natural logarithm of one plus the frequency

count of the term weather, after controlling firm size and time-invariant firm characteris-

tics. As expected, it shows a strong positive relation between the two measures, suggest-

ing that firms that employ more outdoor workers discuss more about weather in 10-Ks.

More importantly, in Figure IC.4 (B), the positive correlation between the labor exposure

measure and firms’ capital utilization in production (Log(Capital/Emp)) holds after con-

trolling for firm-level characteristics and the weather variable, suggesting that the labor

exposure measure has significant additional power in explaining firms’ choices of labor

and capital in production.

Additionally, I obtain data on managers’ discussion of climate change in earnings con-

ference calls from Sautner et al. (2023). I use two measures developed in the paper - Cli-

mate Change Exposure and Climate Change Risk. The exposure measure captures the relative

frequency of managers’ mention of climate change in earnings conference calls. The risk

measure captures the relative frequency of managers’ mention of climate change together

with the words "risk" or "uncertainty" (or synonyms thereof). I scale the two measures by

multiplying them by 1,000. It shows that the labor exposure measure has a positive corre-

lation with both Climate Change Exposure (Figure IC.5 (A)) and Climate Change Risk (Figure

IC.6 (A)), the former of which displays a greater magnitude of correlation compared to
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the latter. More importantly, the positive correlation between the labor exposure measure

and firms’ capital utilization in production can not be fully explained by Climate Change

Exposure (Figure IC.5 (B)) or Climate Change Risk (Figure IC.5 (B)).

Furthermore, I compare the correlations between my labor exposure measure and the

heat exposure measures developed by Trucost, part of the S&P Global. Specifically, Tru-

cost first models location-specific (100 x 100km to 200 x 200km) heat risk scores (1 to 100)

and then aggregate the scores at the firm level based on the firm’s asset locations. In

the absence of sufficient asset-level data, physical risk is estimated based on firms’ head-

quarters locations (weighted at 20%), evenue shares by country, and the average physical

risk level in each country (weighted at 80%). Trucost’s heat exposure measures are avail-

able starting from August 2018. Essentially, the asset-based measure assumes that all of

a firm’s physical assets are exposed to and affected by extreme heat in the same magni-

tude if local temperatures are abnormally hot, despite significant heterogeneities in these

asset types. The revenue-based measure assumes that a firm’s revenues are affected in a

country if the country experiences a heat wave, which may not affect firms’ production

processes at all. Consequently, Trucost’s measures are fundamentally different from mine

by construction and do not capture any heat exposures from a labor perspective. Consis-

tent with this conjecture, Figure IC.7 (A) and IC.8 (A) show that the correlations between

my measure of labor exposure and Trucost’s measures of heat exposure are almost zero.44

More importantly, Figure IC.7 (B) and IC.8 (B) show that the significant power of my la-

bor exposure measure in explaining firms’ choices of labor and capital input remains after

controlling the asset-based or revenue-based heat exposures from Trucost.

Overall, these results show that reliance on outdoor workers in production exposes

44The correlations between heat exposures from Trucost and exposure measures from Sautner et al. (2023)
and Nagar and Schoenfeld (2022) are also very low. For instance, the asset-based heat exposure measure
has a correlation of -0.079 with Climate Change Exposure and a correlation of -0.064 with Climate Change Risk.
The revenue-based heat exposure measure has a correlation of -0.012 with Climate Change Exposure and a
correlation of -0.039 with Climate Change Risk.
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firms to significant climate risks. Such labor exposures can not be fully explained by other

measures of climate exposures developed in the literature or by Trucost. These evidence

builds the foundation for studying corporate exposure to climate change and adaptation

actions from a labor channel.
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Figure IC.1. Distribution of Labor Exposure to Climate Risk Across Sectors

This figure presents the distribution of the industry-level measure of labor exposure to climate
risk (Equation (4)) across NAICS2 sectors.
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Figure IC.2. Distribution of Labor Exposure to Climate Risk Across Skill Levels

This figure presents the distribution of the industry-level measure of labor exposure to climate
risk (Equation (4)) across skill levels.

14



Figure IC.3. Distribution of Labor Exposure to Climate Risk Across Counties

These figures present the level of labor exposure to climate risk for each U.S. county in 2000,
2006, 2012, and 2018. The county-level labor exposure is calculated using the weighted average
of each NAICS4 industry’s labor exposure. The weight is the number of employees working in a
NAICS4 industry and a county from the Quarterly Census of Employment and Wages (QCEW)
data. Counties in white denote those for which the QCEW data is not available.

(A) (B)

(C) (D)
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Figure IC.4. Labor Exposure to Climate Risk and Firms’ Discussion of Weather in 10-Ks

Figure (A) presents the correlation between the measure of labor exposure to climate risk and
firms’ discussion of weather in 10-Ks from Nagar and Schoenfeld (2022) after controlling firm size
and time-invariant firm characteristics. Figure (B) presents the correlation between the measure of
labor exposure to climate risk and firms’ capital utilization in production (Log(Capital/Emp)) after
controlling for firm-level characteristics and firms’ discussion of weather in 10-Ks. The sample
period is from 1999 to 2018.

(A) Weather

(B) Capital-labor Ratio - Log(Capital/Emp)
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Figure IC.5. Labor Exposure to Climate Risk and Firms’ Discussion of Climate Change in Earnings Con-
ference Calls
Figure (A) presents the correlation between the measure of labor exposure to climate risk and
firms’ discussion of climate change in earnings conference calls (Climate Change Exposure) from
Sautner et al. (2023) after controlling firm size and time-invariant firm characteristics. Figure (B)
presents the correlation between the labor exposure measure and firms’ capital utilization in pro-
duction (Log(Capital/Emp)) after controlling for firm-level characteristics and the Climate Change
Exposure measure. The sample period is from 1999 to 2019.

(A) Climate Change Exposure

(B) Capital-labor Ratio - Log(Capital/Emp)
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Figure IC.6. Labor Exposure to Climate Risk and Firms’ Discussion of Climate Risk in Earnings Confer-
ence Calls
Figure (A) presents the correlation between the measure of labor exposure to climate risk and
firms’ discussion of climate risk in earnings conference calls (Climate Change Risk) from Sautner
et al. (2023) after controlling firm size and time-invariant firm characteristics. Figure (B) presents
the correlation between the labor exposure measure and firms’ capital utilization in production
(Log(Capital/Emp)) after controlling for firm-level characteristics and the Climate Change Risk mea-
sure. The sample period is from 1999 to 2019.

(A) Climate Change Risk

(B) Capital-labor Ratio - Log(Capital/Emp)
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Figure IC.7. Labor Exposure to Climate Risk and Asset-based Heat Exposure from Trucost Climate Ana-
lytics
Figure (A) presents the correlation between the measure of labor exposure to climate risk and
firms’ asset exposure to extreme heat provided by Trucost Climate Analytics, after controlling
firm size and time-invariant industry characteristics. Figure (B) presents the correlation between
the labor exposure measure and firms’ capital utilization in production (Log(Capital/Emp)) after
controlling for firm-level characteristics and the Trucost asset-based measure of heat exposure.

(A) Trucost Asset-based Exposure to Extreme Heat

(B) Capital-labor Ratio - Log(Capital/Emp)
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Figure IC.8. Labor Exposure to Climate Risk and Revenue-based Heat Exposure from Trucost Climate
Analytics
Figure (A) presents the correlation between the measure of labor exposure to climate risk and
firms’ revenue exposure to extreme heat provided by Trucost Climate Analytics, after controlling
firm size and time-invariant industry characteristics. Figure (B) presents the correlation between
the labor exposure measure and firms’ capital utilization in production (Log(Capital/Emp)) after
controlling for firm-level characteristics and the Trucost revenue-based measure of heat exposure.

(A) Trucost Revenue-based Exposure to Extreme Heat

(B) Capital-labor Ratio - Log(Capital/Emp)
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Table IC.1. Occupational Employment and Wage Statistics (OEWS) and the Occupational Information
Network (O*NET) Program

This table reports the versions and release dates of the Occupational Employment and Wage Statis-
tics (OEWS) and the Occupational Information Network (O*NET) Program datasets used for constructing
the measure of labor exposure to climate risk.

Year
O*NET Data OEWS Data

Version Release Date Release Date Industry Code

1999 Work Context_4_0 June, 2002 1999 SIC
2000 Work Context_4_0 June, 2002 2000 SIC
2001 Work Context_4_0 June, 2002 2001 SIC
2002 Work Context_4_0 June, 2002 2002 NAICS
2003 Work Context_5_1 November, 2003 May, 2003 NAICS
2004 Work Context_7_0 December, 2004 May, 2004 NAICS
2005 Work Context_9_0 December, 2005 May, 2005 NAICS
2006 Work Context_11_0 December, 2006 May, 2006 NAICS
2007 Work Context_12_0 June, 2007 May, 2007 NAICS
2008 Work Context_13_0 June, 2008 May, 2008 NAICS
2009 Work Context_14_0 June, 2009 May, 2009 NAICS
2010 Work Context_15_1 February, 2011 May, 2010 NAICS
2011 Work Context_16_0 July, 2011 May, 2011 NAICS
2012 Work Context_17_0 July, 2012 May, 2012 NAICS
2013 Work Context_18_0 July, 2013 May, 2013 NAICS
2014 Work Context_19_0 July, 2014 May, 2014 NAICS
2015 Work Context_20_1 October, 2015 May, 2015 NAICS
2016 Work Context_21_1 November, 2016 May, 2016 NAICS
2017 Work Context_22_1 October, 2017 May, 2017 NAICS
2018 Work Context_23_1 November, 2018 May, 2018 NAICS
2019 Work Context_24_1 November, 2019 May, 2019 NAICS
2020 Work Context_25_1 November, 2020 May, 2020 NAICS
2021 Work Context_26_1 November, 2021 May, 2021 NAICS
2022 Work Context_27_1 November, 2022 May, 2022 NAICS
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Table IC.2. Examples of Industries with Heterogeneous Labor Exposures to Climate Risk

This table presents examples of industries with high, medium or low exposure to climate
risk through the labor channel, based on the measure of Labor Exposure in 2015 ( Equation (4)).

NAICS4 Code NAICS4 Title Labor Exposure

High Exposure

1133 Logging 20
5621 Waste Collection 20
4821 Rail Transportation 20
2121 Coal Mining 19
2362 Nonresidential Building Construction 19
4911 Postal Service 19
4244 Grocery and Related Product Merchant Wholesalers 17
3251 Basic Chemical Manufacturing 16
8113 Commercial and Industrial Machinery and Equipment 16

(except Automotive and Electronic) Repair and Maintenance
6244 Child Day Care Services 16

Medium Exposure

4421 Furniture Stores 14
7131 Amusement Parks and Arcades 12
5613 Employment Services 12
8112 Electronic and Precision Equipment Repair and Maintenance 11
3272 Glass and Glass Product Manufacturing 11
3312 Steel Product Manufacturing from Purchased Steel 10
5151 Radio and Television Broadcasting 10
6243 Vocational Rehabilitation Services 9
3261 Plastics Product Manufacturing 8
3353 Electrical Equipment Manufacturing 7

Low Exposure

5418 Advertising, Public Relations, and Related Services 5
7211 Traveler Accommodation 5
4451 Grocery Stores 4
3341 Computer and Peripheral Equipment Manufacturing 3
5182 Data Processing, Hosting, and Related Services 2
3162 Footwear Manufacturing 2
5614 Business Support Services 1
5412 Accounting, Tax Preparation, Bookkeeping, and Payroll Services 1
6215 Medical and Diagnostic Laboratories 1
8121 Personal Care Services 1
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D Temperatures

Figure ID.1 presents the annual number of abnormally hot days (daily maximum temper-

atures above the estimated 90th percentile threshold in summer) for the average county

from 1999 to 2019. It shows that, from 1999 to 2019, the average number of hot days

hovers around 10, but with considerable year-to-year variability. Due to the occurrence

of two significant and widespread North American heatwaves, 2011 and 2012 stand out

with more hot days — 22 and 18, respectively — compared to the rest of the period.

Figure ID.2 presents the average summer temperatures (daily mean and maximum) in

the continental U.S. from 1999 to 2019. The year-to-year fluctuations in average tempera-

tures are modest compared with variations in relative high temperature shocks presented

in Figure ID.1.

Figure ID.3 presents differences in temperatures under hot and non-hot scenarios. Hot

scenarios refer to counties and years with relative heat shocks defined in Equation (1).

The figure shows that the average number of days with temperatures above the rolling

90th percentile threshold in summer is 22 in hot scenarios (T ≥ 15) and 6 in non-hot ones

(T < 15). The number of days with temperatures above the 30◦C in summer is 60 and

42, respectively. And the average daily maximum temperature in summer is 31◦C and

29◦C, respectively. These evidence suggests that summer temperatures classified as hot

by Equation (1) are significantly hotter than those in other summers.
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Figure ID.1. Time-Series Abnormally High Temperatures in the Continental U.S.

This figure presents the annual number of abnormally hot days (daily maximum temperatures
above the estimated 90th percentile threshold in summer) for the average county from 1999 to
2019.
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Figure ID.2. Time-Series Average Temperatures in the Continental U.S.

This figure presents the average summer temperatures (daily mean and maximum) in the conti-
nental U.S. from 1999 to 2019.
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Figure ID.3. Temperature Differences: Hot vs. Non-Hot Scenarios

This figure presents differences in temperatures under hot and non-hot scenarios. Hot scenarios
refer to counties and years with relative heat shocks defined in Equation (1). The first two bars
present the average number of days in summer with temperatures above the rolling 90th percentile
threshold. The second two bars present the number of days with summer temperatures above the
30◦C. The third two bars present the average daily maximum temperature in summer.
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E Labor Productivity

In this section, I first present additional figures and tables that are complementary to

analyses in Table 2 and 3. I then present additional tables to demonstrate the robustness

of the results in Table 2 and 3.

E.1 Additional Analyses - Table 2 and 3

Panel (A) of Table IE.1 presents the treatment effects of heat shocks on firm-level labor

productivity for firms in each exposure category (1 to 20), based on the estimation in

column (5) of Table 2. Panel B of Table IE.1 presents the dynamic treatment effects.

Panel (A) of Table IE.2 and Figure IE.1 presents the treatment effects of heat shocks on

plant-level labor productivity for plants in each exposure category (1 to 20), based on the

estimation in column (4) of Table 3. Panel B of Table IE.2 presents the dynamic treatment

effects.

E.2 Robustness of Table 2 and 3

Alternative Measures of Heat Shocks: Rolling Windows. In Equation (1) and (2), I use

historical temperatures from 1981 to the previous year (1981 to t-1) to estimate the 90th

percentile threshold and identify heat shocks, with a maximum of 30 years. By construc-

tion, the number of reference years varies, increasing from 18 in 1999 to a maximum of 30

for the 2011 - 2019 period. To address the concern that variations in the reference period

would bias my estimation, I conduct additional analyses using a rolling window of the

past 10 or 20 years, or a fixed reference period 1981 - 2000 to estimate the 90th percentile

threshold. Table IE.3 and Table IE.10 present results using temperatures in the past 10 or

20 years. Results hold.

Alternative Measures of Heat Shocks: Absolute Temperatures. I also reconstruct the

measure of heat shocks by incorporating absolute temperature levels following Pankratz

and Schiller (2023). Specifically, I measure heat shocks if (1) a relative short-term heat

shock happens (Equation (1) and (2); and (2) a county or a firm experiences more than 30
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days with absolute temperatures above 30◦C in a summer. For the alternative, I require

40 days with temperatures above 30◦C. Table IE.4 and Table IE.11 report the results.

Alternative Measures of Heat Shocks: Choice of T. In Equation (1) and (2), I set T = 15,

a 50% increase in abnormally hot days relative to the benchmark of 10 to measure heat

shocks. Table IE.5 sets T = 14 to reflect a 40% increase in abnormally hot days. Table IE.6

sets T = 16 to reflect a 60% increase in abnormally hot days. Results hold.

Controlling for Other Climate Events. In addition to high temperatures, my measure

of labor exposure also captures workers’ and firms’ exposures to other climate events,

such as cold temperatures, precipitation, earthquakes, hurricanes, floods, wildfires, and

storms. Some of these climate events affect both indoor and outdoor workers (e.g., floods,

hurricanes, wildfires, storms), and some affect indoor workers more (e.g., earthquakes).

These events could introduce biases against my analyses, making it harder to find signif-

icant effects of heat shocks. However, climate events like cold temperatures and precip-

itation primarily affect outdoor workers and thus may bias my estimation. To address

this concern, in Internet Appendix Table IE.7 and IE.12, I add interaction terms of labor

exposure with other climate events, including cold temperatures, precipitation, and all

climate disasters reported to Federal Emergency Management Agency (FEMA). Overall,

I find no effects of non-heat climate events on firm-level or plant-level labor productivity.

The fact that cold temperature shocks do not affect labor productivity in summer also

serves as a falsification test, further supporting my hypothesis. More importantly, after

adding these controls, high temperatures still negatively affect labor productivity, and

economic magnitudes are similar.

Excluding A Consumption Channel and Sector Breakdowns. High temperatures may

drive consumers toward indoor activities, thereby keeping them away from stores and

restaurants and leading to lower firm sales (Addoum et al., 2023). Consequently, one may

argue that my findings could be influenced by consumer demand. To mitigate the con-
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cern, I redo the analyses after excluding consumer-oriented sectors in Table IE.8 columns

(1) - (3). The results hold and economic effects are similar, indicating that demand-side

forces do not likely drive my findings. Additionally, I further drop the agricultural sector

and split firms into two broad categories: goods-producing (columns (4) - (6)) and service

sectors (columns (7) - (9)). Consistent with my expectation that the outdoor workforce is

a critical production input in the whole economy, I find that the effects of extreme heat

exist in both categories. The evidence also demonstrates that drops in crop yields do not

drive my results. More importantly, service sectors suffer larger heat-related losses in la-

bor productivity (-4.4% at the 75th percentile) relative to goods-producing sectors (2.3%),

indicating that prior studies focusing on manufacturing firms might underestimate the

impact of extreme heat on labor productivity.

Heat Shocks in Firm Headquarters County. Table IE.9 presents the treatment effects of

short-term heat shocks that happen in firms’ headquarters counties on firm-level labor

productivity. Columns (1) - (5) use short-term heat shocks that happen in firms’ head-

quarters counties, measured in Equation (1). Columns (6) - (8) further require at least at

least 30 summer days with temperatures ≥ 30◦C. Columns (9) - (11) further require at

least at least 40 summer days with temperatures ≥ 30◦C. Results hold.

Segment Sales. Table IE.13 presents the treatment effects of heat shocks on segment-

level sales. I obtain the segment-level data on sales and assets from the Compustat seg-

ment files. The dependent variable is a segment’s sales scaled by its assets, Log(Segment

Sales/Segment AT). I do not calculate labor productivity using the segment-level number of

employees because this information is missing for most observations. Nevertheless, my

analysis shows that heat shocks significantly reduce segment-level sales. The economic

magnitude is also large. Segments with labor exposure at the 75th percentile lose about

1.9% of sales scaled by assets following heat shocks, while segments with the highest ex-

posure lose about 3.4%. This evidence lends further support to the results in Table 2 and
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3 that unexpected high temperatures reduce corporate performance.
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Figure IE.1. Treatment Effects of Heat Shocks on Plant-level Labor Productivity: Table 3

This figure presents the treatment effects of heat shocks on plant-level labor productivity by labor
exposure category, based on the estimation in column (4) of Table 3.
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Table IE.1. Heat Shocks and Firm-level Labor Productivity: Table 2

This table presents additional tests in the setting of Table 2. Panel A presents the treatment effects
of heat shocks on firm-level labor productivity by labor exposure category, based on the estimation in Table
2 column (5). Panel B presents the dynamic treatment effects.

Panel A. Treatment Effects by Labor Exposure

Labor Exposure Treatment Effect (%) Std. Error

1 1.1 (0.011)
2 0.9 (0.010)
3 0.6 (0.009)
4 0.4 (0.009)
5 0.2 (0.008)
6 0.0 (0.008)
7 -0.2 (0.008)
8 -0.4 (0.007)
9 -0.6 (0.007)
10 -0.8 (0.007)
11 -1.1 (0.007)
12 -1.3* (0.007)
13 -1.5** (0.007)
14 -1.7** (0.008)
15 -1.9** (0.008)
16 -2.1** (0.009)
17 -2.3** (0.009)
18 -2.5** (0.010)
19 -2.7*** (0.010)
20 -3.0*** (0.011)
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Panel B. Dynamic Treatment Effects

(1) (2) (3) (4) (5) (6) (7)

Log(Sales/Emp)

1 (Realized ≫ Expected) (T-3) x Labor Exposure -0.0011
(0.0011)

1 (Realized ≫ Expected) (T-2) x Labor Exposure -0.0009
(0.0011)

1 (Realized ≫ Expected) (T-1) x Labor Exposure -0.0009
(0.0009)

1 (Realized ≫ Expected) (T) x Labor Exposure -0.0021**
(0.0009)

1 (Realized ≫ Expected) (T+1) x Labor Exposure -0.0007
(0.0010)

1 (Realized ≫ Expected) (T+2) x Labor Exposure -0.0004
(0.0010)

1 (Realized ≫ Expected) (T+3) x Labor Exposure -0.0005
(0.0010)

Observations 35,032 40,059 45,951 53,494 45,993 40,056 35,031
Controls Yes Yes Yes Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes Yes Yes Yes
County x NAICS2 Yes Yes Yes Yes Yes Yes Yes
County x Year Yes Yes Yes Yes Yes Yes Yes
NAICS4 x Year Yes Yes Yes Yes Yes Yes Yes
Adjusted R2 0.903 0.898 0.890 0.876 0.883 0.886 0.888
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Table IE.2. Heat Shocks and Plant-level Labor Productivity: Table 3

This table presents additional tests in the setting of Table 3. Panel A presents the treatment effects
of heat shocks on plant-level labor productivity by labor exposure category, based on the estimation in
Table 3 column (4). Panel B presents the dynamic treatment effects.

Panel A. Treatment Effects by Labor Exposure

Labor Exposure Treatment Effect (%) Std. Error

1 0.20** (0.010)
2 0.18* (0.009)
3 0.15* (0.008)
4 0.13* (0.007)
5 0.10 (0.007)
6 0.08 (0.006)
7 0.06 (0.005)
8 0.03 (0.005)
9 0.01 (0.004)
10 -0.01 (0.004)
11 -0.04 (0.004)
12 -0.06 (0.004)
13 -0.09* (0.005)
14 -0.11** (0.005)
15 -0.13** (0.006)
16 -0.16** (0.007)
17 -0.18** (0.007)
18 -0.21** (0.008)
19 -0.23** (0.009)
20 -0.25** (0.010)
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Panel B. Dynamic Treatment Effects

(1) (2) (3) (4) (5) (6) (7)

Log(Sales/Emp)

1 (Realized ≫ Expected) (T-3) x Labor Exposure -0.0001
(0.0001)

1 (Realized ≫ Expected) (T-2) x Labor Exposure -0.0000
(0.0001)

1 (Realized ≫ Expected) (T-1) x Labor Exposure -0.0001
(0.0001)

1 (Realized ≫ Expected) (T) x Labor Exposure -0.0002**
(0.0001)

1 (Realized ≫ Expected) (T+1) x Labor Exposure -0.0001
(0.0001)

1 (Realized ≫ Expected) (T+2) x Labor Exposure 0.0000
(0.0001)

1 (Realized ≫ Expected) (T+3) x Labor Exposure -0.0001
(0.0001)

Observations 1,653,870 1,939,820 2,307,504 2,769,222 2,307,470 1,939,865 1,653,878
Controls Yes Yes Yes Yes Yes Yes Yes
NAICS4 FE Yes Yes Yes Yes Yes Yes Yes
NAICS2 x Year FE Yes Yes Yes Yes Yes Yes Yes
County x NAICS2 FE Yes Yes Yes Yes Yes Yes Yes
Firm x Year FE Yes Yes Yes Yes Yes Yes Yes
Adjusted R2 0.943 0.940 0.936 0.932 0.935 0.938 0.940
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Table IE.3. Heat Shocks and Firm-level Labor Productivity: Rolling Windows of Past 10 or 20 Years

This table presents robustness checks of the treatment effects of short-term heat shocks on firm-level labor productivity, using
rolling windows of past 10 or 20 years to calculate the 90th percentile threshold to identify heat shocks. The dependent variable is the
natural logarithm of a firm’s sales per employee Log(Sales/Emp). The key independent variables are a firm’s labor exposure to climate risk
(Labor Exposure), a dummy indicating heat shocks (1 (Realized ≫ Expected)), and an interaction term of the two (1 (Realized ≫ Expected)
× Labor Exposure). Controls include the logarithm of total assets (Size), market-to-book ratio (M/B), book leverage (Book Leverage), cash
holdings (Cash), and a dummy indicating that a firm pays dividends (Dividend Payer). The sample period is from 1999 to 2019. Numbers
in parentheses are standard errors. Standard errors are clustered at the NAICS4 level. ***, **, and * indicate p-values of 1%, 5%, and 10%,
respectively.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Log(Sales/Emp)

10 Years 20 Years

1 (Realized ≫ Expected) -0.003 0.019** 0.020** 0.009 0.007 0.002 0.021** 0.024** 0.017* 0.018
(0.005) (0.009) (0.009) (0.008) (0.009) (0.006) (0.009) (0.010) (0.010) (0.011)

Labor Exposure 0.007*** 0.007*** 0.001 0.007*** 0.007*** 0.001
(0.003) (0.003) (0.002) (0.003) (0.003) (0.002)

1 (Realized ≫ Expected) x Labor Exposure -0.003*** -0.003*** -0.001** -0.002** -0.002*** -0.003*** -0.002** -0.002**
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

Observations 58,711 58,711 54,489 54,399 53,494 58,711 58,711 54,489 54,399 53,494
Controls Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
State x Year FE Yes Yes No No No Yes Yes No No No
County x Year FE No No Yes Yes Yes No No Yes Yes Yes
County x NAICS2 FE No No No Yes Yes No No No Yes Yes
NAICS2 x Year FE No No No Yes No No No No Yes No
NAICS4 x Year FE No No No No Yes No No No No Yes
Adjusted R2 0.858 0.858 0.859 0.871 0.876 0.858 0.858 0.859 0.871 0.876

Treatment Effect for 1 (Realized ≫ Expected) × Labor Exposure

Labor Exposure=15 -0.020*** -0.020** -0.013* -0.018** -0.014** -0.015* -0.010 -0.014*
(0.007) (0.008) (0.007) (0.007) (0.007) (0.008) (0.008) (0.008)

Labor Exposure=20 -0.032*** -0.033*** -0.020** -0.027** -0.025*** -0.029*** -0.018* -0.025**
(0.009) (0.011) (0.010) (0.011) (0.009) (0.011) (0.010) (0.012)
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Table IE.4. Heat Shocks and Firm-level Labor Productivity: Number of Days with Temperatures ≥ 30◦C

This table presents robustness checks of the treatment effects of short-term heat shocks on firm-level labor productivity by incorpo-
rating the number of days with temperatures ≥ 30◦C. Columns (1) - (5) define heat shocks by requiring (1) the existence of a relative heat
shock (1 (Realized ≫ Expected), and (2) at least 30 summer days with temperatures ≥ 30◦C. Columns (6) - (10) differs by requiring at least
40 summer days with temperatures ≥ 30◦C. The dependent variable is the natural logarithm of a firm’s sales per employee Log(Sales/Emp).
The key independent variables are a firm’s labor exposure to climate risk (Labor Exposure), a dummy indicating heat shocks (1 (Realized
≫ Expected)), and an interaction term of the two (1 (Realized ≫ Expected) × Labor Exposure). Controls include the logarithm of total assets
(Size), market-to-book ratio (M/B), book leverage (Book Leverage), cash holdings (Cash), and a dummy indicating that a firm pays dividends
(Dividend Payer). The sample period is from 1999 to 2019. Numbers in parentheses are standard errors. Standard errors are clustered at the
NAICS4 level. ***, **, and * indicate p-values of 1%, 5%, and 10%, respectively.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Log(Sales/Emp)

1 (Realized ≫ Expected) & Days (30◦C) ≥ 30 1 (Realized ≫ Expected) & Days (30◦C) ≥ 40

1 (Realized ≫ Expected) -0.008 0.012 0.014 0.008 0.010 -0.007 0.012 0.016 0.010 0.011
(0.006) (0.010) (0.012) (0.011) (0.012) (0.006) (0.011) (0.012) (0.011) (0.012)

Labor Exposure 0.007** 0.007*** 0.001 0.007** 0.007*** 0.001
(0.003) (0.003) (0.002) (0.003) (0.003) (0.002)

1 (Realized ≫ Expected) x Labor Exposure -0.002*** -0.003*** -0.002* -0.002** -0.002*** -0.003*** -0.002** -0.002**
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

Observations 58,711 58,711 54,489 54,399 53,494 58,711 58,711 54,489 54,399 53,494
Controls Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
State x Year FE Yes Yes No No No Yes Yes No No No
County x Year FE No No Yes Yes Yes No No Yes Yes Yes
County x NAICS2 FE No No No Yes Yes No No No Yes Yes
NAICS2 x Year FE No No No Yes No No No No Yes No
NAICS4 x Year FE No No No No Yes No No No No Yes
Adjusted R2 0.858 0.858 0.859 0.871 0.876 0.858 0.858 0.859 0.871 0.876

Treatment Effect for 1 (Realized ≫ Expected) × Labor Exposure

Labor Exposure=15 -0.022*** -0.026*** -0.018** -0.022** -0.020*** -0.026*** -0.020** -0.026***
(0.007) (0.009) (0.008) (0.009) (0.007) (0.009) (0.008) (0.009)

Labor Exposure=20 -0.034*** -0.040*** -0.026** -0.032*** -0.031*** -0.040*** -0.030*** -0.038***
(0.009) (0.011) (0.011) (0.012) (0.009) (0.012) (0.011) (0.013)
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Table IE.5. Heat Shocks and Firm-level Labor Productivity: T = 14 to Identify Heat Shocks

This table presents robustness checks of the treatment effects of short-term heat shocks on firm-level labor productivity by setting
T = 14 to identify heat shocks. Columns (1) - (5) define heat shocks by setting T = 14, and columns (6) - (10) further require at least 30
summer days with temperatures ≥ 30◦C. The dependent variable is the natural logarithm of a firm’s sales per employee Log(Sales/Emp).
The key independent variables are a firm’s labor exposure to climate risk (Labor Exposure), a dummy indicating heat shocks (1 (Realized
≫ Expected)), and an interaction term of the two (1 (Realized ≫ Expected) × Labor Exposure). Controls include the logarithm of total assets
(Size), market-to-book ratio (M/B), book leverage (Book Leverage), cash holdings (Cash), and a dummy indicating that a firm pays dividends
(Dividend Payer). The sample period is from 1999 to 2019. Numbers in parentheses are standard errors. Standard errors are clustered at the
NAICS4 level. ***, **, and * indicate p-values of 1%, 5%, and 10%, respectively.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Log(Sales/Emp)

T = 14: 1 (Realized ≫ Expected) & Days T = 14: 1 (Realized ≫ Expected) & Days (30◦C) ≥ 30

1 (Realized ≫ Expected) -0.004 0.010 0.019** 0.015** 0.016* -0.006 0.013 0.019** 0.012 0.015*
(0.005) (0.007) (0.008) (0.007) (0.008) (0.005) (0.008) (0.009) (0.008) (0.009)

Labor Exposure 0.007** 0.007*** 0.001 0.007*** 0.007*** 0.001
(0.003) (0.003) (0.002) (0.003) (0.003) (0.002)

1 (Realized ≫ Expected) x Labor Exposure -0.002*** -0.002*** -0.002** -0.002** -0.002*** -0.003*** -0.002** -0.002**
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

Observations 58,711 58,711 54,489 54,399 53,494 58,711 58,711 54,489 54,399 53,494
Controls Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
State x Year FE Yes Yes No No No Yes Yes No No No
County x Year FE No No Yes Yes Yes No No Yes Yes Yes
County x NAICS2 FE No No No Yes Yes No No No Yes Yes
NAICS2 x Year FE No No No Yes No No No No Yes No
NAICS4 x Year FE No No No No Yes No No No No Yes
Adjusted R2 0.858 0.858 0.859 0.871 0.876 0.858 0.858 0.859 0.871 0.876

Treatment Effect for 1 (Realized ≫ Expected) × Labor Exposure

Labor Exposure=15 -0.016** -0.015* -0.008 -0.011 -0.021*** -0.021*** -0.011 -0.012
(0.007) (0.008) (0.007) (0.008) (0.006) (0.008) (0.007) (0.008)

Labor Exposure=20 -0.025*** -0.026** -0.016 -0.020* -0.032*** -0.034*** -0.018* -0.020*
(0.009) (0.011) (0.010) (0.011) (0.009) (0.010) (0.010) (0.011)
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Table IE.6. Heat Shocks and Firm-level Labor Productivity: T = 16 to Identify Heat Shocks

This table presents robustness checks of the treatment effects of short-term heat shocks on firm-level labor productivity by setting
T = 16 to identify heat shocks. Columns (1) - (5) define heat shocks by setting T = 16, and columns (6) - (10) further require at least 30
summer days with temperatures ≥ 30◦C. The dependent variable is the natural logarithm of a firm’s sales per employee Log(Sales/Emp).
The key independent variables are a firm’s labor exposure to climate risk (Labor Exposure), a dummy indicating heat shocks (1 (Realized
≫ Expected)), and an interaction term of the two (1 (Realized ≫ Expected) × Labor Exposure). Controls include the logarithm of total assets
(Size), market-to-book ratio (M/B), book leverage (Book Leverage), cash holdings (Cash), and a dummy indicating that a firm pays dividends
(Dividend Payer). The sample period is from 1999 to 2019. Numbers in parentheses are standard errors. Standard errors are clustered at the
NAICS4 level. ***, **, and * indicate p-values of 1%, 5%, and 10%, respectively.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Log(Sales/Emp)

T = 16: 1 (Realized ≫ Expected) & Days T = 16: 1 (Realized ≫ Expected) & Days (30◦C) ≥ 30

1 (Realized ≫ Expected) -0.002 0.013 0.015 0.008 0.010 -0.005 0.014 0.016 0.007 0.011
(0.005) (0.009) (0.009) (0.009) (0.010) (0.005) (0.010) (0.011) (0.010) (0.012)

Labor Exposure 0.007** 0.007*** 0.001 0.007** 0.007*** 0.001
(0.003) (0.003) (0.002) (0.003) (0.003) (0.002)

1 (Realized ≫ Expected) x Labor Exposure -0.002** -0.002*** -0.001** -0.002** -0.002*** -0.003*** -0.002* -0.002**
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

Observations 58,711 58,711 54,489 54,399 53,494 58,711 58,711 54,489 54,399 53,494
Controls Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
State x Year FE Yes Yes No No No Yes Yes No No No
County x Year FE No No Yes Yes Yes No No Yes Yes Yes
County x NAICS2 FE No No No Yes Yes No No No Yes Yes
NAICS2 x Year FE No No No Yes No No No No Yes No
NAICS4 x Year FE No No No No Yes No No No No Yes
Adjusted R2 0.858 0.858 0.859 0.871 0.876 0.858 0.858 0.859 0.871 0.876

Treatment Effect for 1 (Realized ≫ Expected) × Labor Exposure

Labor Exposure=15 -0.013** -0.017** -0.014* -0.019** -0.018*** -0.022** -0.016* -0.021**
(0.007) (0.009) (0.008) (0.009) (0.007) (0.009) (0.008) (0.009)

Labor Exposure=20 -0.022** -0.028** -0.022** -0.029** -0.028*** -0.035*** -0.024** -0.031**
(0.009) (0.012) (0.011) (0.012) (0.009) (0.012) (0.011) (0.013)
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Table IE.7. Heat Shocks and Firm-level Labor Productivity: Controlling for Other Climate Events

This table presents robustness checks of the treatment effects of short-term heat shocks on firm-level labor productivity by control-
ling other climate events. Columns (1) - (3) controls for cold temperature shocks. Columns (4) - (6) controls for precipitation shocks.
Columns (7) - (9) controls for all disasters reported to the FEMA. The dependent variable is the natural logarithm of a firm’s sales per
employee Log(Sales/Emp). The key independent variables are a firm’s labor exposure to climate risk (Labor Exposure), a dummy indicating
heat shocks (1 (Realized ≫ Expected)), existence of other climate disasters, and the interaction terms. Controls include the logarithm of total
assets (Size), market-to-book ratio (M/B), book leverage (Book Leverage), cash holdings (Cash), and a dummy indicating that a firm pays
dividends (Dividend Payer). The sample period is from 1999 to 2019. Numbers in parentheses are standard errors. Standard errors are
clustered at the NAICS4 level. ***, **, and * indicate p-values of 1%, 5%, and 10%, respectively.

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Log(Sales/Emp)

Cold Temperatures Precipitation FEMA Disasters

1 (Realized ≫ Expected) 0.016 0.011 0.013 0.016 0.012 0.013 0.016 0.012 0.013
(0.010) (0.010) (0.011) (0.010) (0.010) (0.011) (0.010) (0.010) (0.011)

Labor Exposure 0.007*** 0.001 0.007*** 0.001 0.008*** 0.001
(0.003) (0.002) (0.003) (0.002) (0.003) (0.002)

1 (Realized ≫ Expected) x Labor Exposure -0.002*** -0.002** -0.002** -0.002*** -0.002** -0.002** -0.002*** -0.002** -0.002**
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

Other Climate Events -0.014 -0.008 -0.000 -0.007 0.003 0.002 0.002 -0.001 -0.001
(0.010) (0.009) (0.010) (0.009) (0.009) (0.009) (0.004) (0.004) (0.005)

Other Climate Events x Labor Exposure 0.002* 0.001 -0.000 0.001 0.000 -0.000 -0.001** -0.000 -0.000
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.000) (0.000) (0.000)

Observations 54,489 54,399 53,494 54,489 54,399 53,494 54,489 54,399 53,494
Controls Yes Yes Yes Yes Yes Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
County x Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
County x NAICS2 FE No Yes Yes No Yes Yes No Yes Yes
NAICS2 x Year FE No Yes No No Yes No No Yes No
NAICS4 x Year FE No No Yes No No Yes No No Yes
Adjusted R2 0.859 0.871 0.876 0.859 0.871 0.876 54,489 54,399 53,494

Treatment Effect for 1 (Realized ≫ Expected) × Labor Exposure
Labor Exposure=15 -0.020** -0.015* -0.019** -0.019** -0.014* -0.019** -0.020** -0.014* -0.019**

(0.008) (0.008) (0.008) (0.008) (0.008) (0.008) (0.008) (0.008) (0.008)
Labor Exposure=20 -0.032*** -0.023** -0.029*** -0.031*** -0.023** -0.030*** -0.032*** -0.023** -0.029***

(0.011) (0.010) (0.011) (0.011) (0.011) (0.011) (0.010) (0.010) (0.011)
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Table IE.8. Heat Shocks and Firm-level Labor Productivity: Sector Breakdowns

This table presents robustness checks of the treatment effects of short-term heat shocks on firm-level labor productivity using
sector-based subsamples. Columns (1) - (3) exclude consumer-oriented sectors (NAICS2 44, 45, 61, 62, 71, & 72). Columns (4) - (6) focus
on non-consumer-oriented good-producing sectors (NAICS2 21, 23, 31-33, 42, 48 - 49). Columns (7) - (9) focus on non-consumer-oriented
service sectors (NAICS2 51, 53, 54, 56, 81). The dependent variable is the natural logarithm of a firm’s sales per employee Log(Sales/Emp).
The key independent variables are a firm’s labor exposure to climate risk (Labor Exposure), a firm’s labor exposure to other climate events
(Other Climate Events), a dummy indicating heat shocks (1 (Realized ≫ Expected)), and the interaction terms. Controls include the logarithm
of total assets (Size), market-to-book ratio (M/B), book leverage (Book Leverage), cash holdings (Cash), and a dummy indicating that a firm
pays dividends (Dividend Payer). The sample period is from 1999 to 2019. Numbers in parentheses are standard errors. Standard errors are
clustered at the NAICS4 level. ***, **, and * indicate p-values of 1%, 5%, and 10%, respectively.

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Log(Sales/Emp)

Non-consumer-oriented Sectors Goods-producing Sectors Service Sectors

1 (Realized ≫ Expected) 0.021* 0.010 0.012 0.033** 0.020 0.022 0.014 -0.000 -0.001
(0.011) (0.011) (0.013) (0.016) (0.016) (0.017) (0.013) (0.013) (0.014)

Labor Exposure 0.006** 0.001 0.010** 0.006* 0.002 -0.000
(0.003) (0.002) (0.004) (0.003) (0.003) (0.003)

1 (Realized ≫ Expected) x Labor Exposure -0.003*** -0.002** -0.002** -0.004*** -0.003** -0.003** -0.003*** -0.002 -0.003**
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

Observations 46,785 46,728 46,083 31,906 31,876 31,385 13,056 13,044 12,936
Controls Yes Yes Yes Yes Yes Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
County x Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
County x NAICS2 FE No Yes Yes No Yes Yes No Yes Yes
NAICS2 x Year FE No Yes No No Yes No No Yes No
NAICS4 x Year FE No No Yes No No Yes No No Yes
Adjusted R2 0.841 0.850 0.857 0.832 0.837 0.843 0.872 0.876 0.885

Treatment Effect for 1 (Realized ≫ Expected) ×LaborExposure
Labor Exposure=15 -0.019** -0.016* -0.023** -0.023*** -0.021** -0.023** -0.036* -0.044**

(0.008) (0.009) (0.009) (0.008) (0.009) (0.010) (0.021) (0.021)
Labor Exposure=20 -0.032*** -0.025** -0.034*** -0.041*** -0.034*** -0.039*** -0.053** -0.058**

(0.011) (0.011) (0.012) (0.013) (0.013) (0.014) (0.025) (0.026)
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Table IE.9. Heat Shocks and Firm-level Labor Productivity: Heat Shocks in Firm Headquarters County

This table presents the treatment effects of short-term heat shocks happened in firms’ headquarters counties on firm-level labor productivity.
Columns (1) - (5) use short-term heat shocks that happen in firms’ headquarters counties, measured in Equation (1). Columns (6) - (8) further require
at least at least 30 summer days with temperatures ≥ 30◦C. Columns (9) - (11) further require at least at least 40 summer days with temperatures
≥ 30◦C. The dependent variable is the natural logarithm of sales per employee (Log(Sales/Emp)). The key independent variables are a firm’s labor
exposure to climate risk (Labor Exposure), a dummy indicating short-term heat shocks (1 (Realized ≫ Expected)), and an interaction term of the two (1
(Realized ≫ Expected) × Labor Exposure). Controls include the logarithm of total assets (Size), market-to-book ratio (M/B), book leverage (Book Leverage),
cash holdings (Cash), and a dummy indicating that a firm pays dividends (Dividend Payer). The sample period is from 1999 to 2019. Numbers in
parentheses are standard errors. Standard errors are clustered at the NAICS4 level. ***, **, and * indicate p-values of 1%, 5%, and 10%, respectively.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

Log(Sales/Emp)

1 (Realized ≫ Expected) 1 (Realized ≫ Expected) & Days (30◦C) ≥ 30 1 (Realized ≫ Expected) & Days (30◦C) ≥ 40

1 (Realized ≫ Expected) -0.004 0.014 0.005 0.010
(0.007) (0.012) (0.013) (0.013)

Labor Exposure 0.007** 0.007*** 0.001 0.007** 0.007*** 0.001 0.007** 0.007*** 0.001
(0.003) (0.003) (0.002) (0.003) (0.003) (0.002) (0.003) (0.003) (0.002)

1 (Realized ≫ Expected) x Labor Exposure -0.002** -0.003** -0.002** -0.002** -0.002** -0.003** -0.002* -0.002* -0.003** -0.002*
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

Observations 58,711 58,711 54,489 54,399 53,494 58,711 54,489 54,399 58,711 54,489 54,399
Controls Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
State x Year FE Yes Yes No No No Yes No No Yes No No
County x Year FE No No Yes Yes Yes No Yes Yes No Yes Yes
County x NAICS2 FE No No No Yes Yes No No Yes No No Yes
NAICS2 x Year FE No No No Yes No No No Yes No No Yes
NAICS4 x Year FE No No No No Yes No No No No No No
Adjusted R2 0.858 0.858 0.859 0.867 0.872 0.858 0.859 0.867 0.858 0.859 0.867

Treatment Effect for 1 (Realized ≫ Expected) × Labor Exposure

Labor Exposure=15 -0.016** -0.027*** -0.021***
(0.007) (0.007) (0.006)

Labor Exposure=20 -0.026*** -0.038*** -0.031***
(0.010) (0.010) (0.011)
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Table IE.10. Heat Shocks and Plant-level Labor Productivity: Rolling Windows of Past 10 or 20 Years

This table presents robustness checks of the treatment effects of short-term heat shocks on plant-level labor productivity, using
rolling windows of past 10 or 20 years to calculate the 90th percentile thresholds to identify heat shocks. This sample is at the firm-
by-county-by-NAICS4 industry level using the YTS data. The dependent variable is the natural logarithm of sales per employee
Log(Sales/Emp). The key independent variables are a firm’s labor exposure to climate risk (Labor Exposure), a dummy indicating heat shocks
(1 (Realized ≫ Expected)), and an interaction term of the two (1 (Realized ≫ Expected) × Labor Exposure). The sample period is from 1999 to
2019. Numbers in parentheses are standard errors. Standard errors are double clustered at the NAICS4 and the county levels. ***, **, and *
indicate p-values of 1%, 5%, and 10%, respectively.

(1) (2) (3) (4) (5) (6) (7) (8)

Log(Sales/Emp)

10 Years 20 Years

1(Realized ≫ Expected) 0.0033** 0.0018* 0.0036*** 0.0023**
(0.0014) (0.0011) (0.0013) (0.0011)

Labor Exposure 0.0007 0.0003 0.0007 0.0003 0.0007 0.0003 0.0007 0.0003
(0.0008) (0.0011) (0.0008) (0.0011) (0.0008) (0.0011) (0.0008) (0.0011)

1 (Realized ≫ Expected) x Labor Exposure -0.0003* -0.0002* -0.0003** -0.0002** -0.0003*** -0.0002** -0.0004*** -0.0002**
(0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001)

Observations 2,786,839 2,773,205 2,782,878 2,769,222 2,786,839 2,773,205 2,782,878 2,769,222
NAICS4 FE Yes Yes Yes Yes Yes Yes Yes Yes
NAICS2 x Year FE Yes Yes Yes Yes Yes Yes Yes Yes
County x NAICS2 FE Yes Yes Yes Yes Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes Yes Yes Yes Yes
County x Year FE No No Yes Yes No No Yes Yes
Firm x Year FE No Yes No Yes No Yes No Yes
Adjusted R2 0.929 0.933 0.928 0.932 0.929 0.933 0.928 0.932

Treatment Effect for 1 (Realized ≫ Expected) × Labor Exposure

Labor Exposure=15 -0.0009 -0.0010* -0.0017* -0.0010*
(0.0010) (0.0006) (0.0009) (0.0006)

Labor Exposure=20 -0.0023 -0.0019* -0.0034** -0.0021**
(0.0017) (0.0011) (0.0015) (0.0010)
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Table IE.11. Heat Shocks and Plant-level Labor Productivity: Number of Days with Temperatures ≥ 30◦C

This table presents robustness checks of the treatment effects of short-term heat shocks on plant-level labor productivity by incor-
porating the number of days with temperature ≥ 30◦C. This sample is constructed at the firm-by-county-by-NAICS4 industry level using
the YTS data. Columns (1) - (4) define heat shocks by requiring (1) the existence of a relative heat shock (1 (Realized ≫ Expected) , and (2) at
least 30 summer days with temperatures ≥ 30◦C. Columns (5) - (8) differs by requiring at least 40 summer days with temperatures ≥ 30◦C.
The dependent variable is the natural logarithm of sales per employee Log(Sales/Emp). The key independent variables are a firm’s labor
exposure to climate risk (Labor Exposure), a dummy indicating heat shocks (1 (Realized ≫ Expected)), and an interaction term of the two (1
(Realized ≫ Expected) × Labor Exposure). The sample period is from 1999 to 2019. Numbers in parentheses are standard errors. Standard
errors are double clustered at the NAICS4 and the county levels. ***, **, and * indicate p-values of 1%, 5%, and 10%, respectively.

(1) (2) (3) (4) (5) (6) (7) (8)
Log(Sales/Emp)

1 (Realized ≫ Expected) & Days (30◦C) ≥ 30 1 (Realized ≫ Expected) & Days (30◦C) ≥ 40

1(Realized ≫ Expected) 0.0039*** 0.0021* 0.0038*** 0.0020*
(0.0013) (0.0011) (0.0014) (0.0012)

Labor Exposure 0.0007 0.0003 0.0007 0.0003 0.0007 0.0003 0.0007 0.0003
(0.0008) (0.0011) (0.0008) (0.0011) (0.0008) (0.0011) (0.0008) (0.0011)

1 (Realized ≫ Expected) x Labor Exposure -0.0004*** -0.0002** -0.0004*** -0.0002** -0.0004*** -0.0002** -0.0004*** -0.0002**
(0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001)

Observations 2,786,839 2,773,205 2,782,878 2,769,222 2,786,839 2,773,205 2,782,878 2,769,222
NAICS4 FE Yes Yes Yes Yes Yes Yes Yes Yes
NAICS2 x Year FE Yes Yes Yes Yes Yes Yes Yes Yes
County x NAICS2 FE Yes Yes Yes Yes Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes Yes Yes Yes Yes
County x Year FE No No Yes Yes No No Yes Yes
Firm x Year FE No Yes No Yes No Yes No Yes
Adjusted R2 0.929 0.933 0.928 0.932 0.929 0.933 0.928 0.932

Treatment Effect for 1 (Realized ≫ Expected) × Labor Exposure
Labor Exposure=15 -0.0021** -0.0013** -0.0023*** -0.0016**

(0.0008) (0.0006) (0.0008) (0.0007)
Labor Exposure=20 -0.0041*** -0.0025** -0.0044*** -0.0028**

(0.0014) (0.0010) (0.0014) (0.0012)

44



Table IE.12. Heat Shocks and Plant-level Labor Productivity: Controlling for Other Climate Events

This table presents robustness checks of the treatment effects of heat shocks on plant-level labor productivity by controlling other
climate events. Columns (1) - (4) controls for cold temperature shocks. Columns (5) - (8) controls for precipitation shocks. The dependent
variable is the natural logarithm of sales per employee Log(Sales/Emp). The key independent variables are a firm’s labor exposure to climate
risk (Labor Exposure), a dummy indicating heat shocks (1 (Realized ≫ Expected)), existence of other climate disasters, and the interaction
terms. The sample period is from 1999 to 2019. Numbers in parentheses are standard errors. Standard errors are double clustered at the
NAICS4 and the county levels. ***, **, and * indicate p-values of 1%, 5%, and 10%, respectively.

(1) (2) (3) (4) (5) (6) (7) (8)

Log(Sales/Emp)

Cold Temperatures Precipitation

1 (Realized ≫ Expected) 0.0036*** 0.0023** 0.0039*** 0.0025**
(0.0013) (0.0011) (0.0013) (0.0011)

Labor Exposure 0.0007 0.0003 0.0007 0.0003 0.0008 0.0004 0.0008 0.0004
(0.0008) (0.0011) (0.0008) (0.0011) (0.0008) (0.0011) (0.0008) (0.0011)

1 (Realized ≫ Expected) x Labor Exposure -0.0003*** -0.0002** -0.0004*** -0.0002** -0.0004*** -0.0002** -0.0004*** -0.0003**
(0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001)

Other Climate Events -0.0009 -0.0019 0.0000 0.0000 0.0022 0.0018 0.0000 0.0000
(0.0011) (0.0012) (0.0000) (0.0000) (0.0017) (0.0015) (0.0000) (0.0000)

Other Climate Events x Labor Exposure 0.0000 0.0001 0.0000 0.0001 -0.0002 -0.0002 -0.0002 -0.0002
(0.0001) (0.0001) (0.0001) (0.0001) (0.0002) (0.0001) (0.0002) (0.0002)

Observations 2,786,839 2,773,205 2,782,878 2,769,222 2,786,839 2,773,205 2,782,878 2,769,222
Controls Yes Yes Yes Yes Yes Yes Yes Yes
NAICS4 FE Yes Yes Yes Yes Yes Yes Yes Yes
NAICS2 x Year FE Yes Yes Yes Yes Yes Yes Yes Yes
County x NAICS2 FE Yes Yes Yes Yes Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes Yes Yes Yes Yes
County x Year FE No No Yes Yes No No Yes Yes
Firm x Year FE No Yes No Yes No Yes No Yes
Adjusted R2 0.929 0.933 0.928 0.932 0.929 0.933 0.928 0.932

Treatment Effect for 1 (Realized ≫ Expected) × Labor Exposure

Labor Exposure=15 -0.0016* -0.0010* -0.0017* -0.0011*
(0.0009) (0.0006) (0.0009) (0.0006)

Labor Exposure=20 -0.0034** -0.0021** -0.0036** -0.0023**
(0.0015) (0.0010) (0.0015) (0.0010)
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Table IE.13. Heat Shocks and Segment-level Sales

This table presents the treatment effects of heat shocks on segment-level sales scaled by assets. The dependent variable is the natu-
ral logarithm of a segment’s sales scaled by its assets, Log(Segment Sales/Segment AT). The key independent variables are a firm’s labor
exposure to climate risk (Labor Exposure), a dummy indicating heat shocks (1 (Realized ≫ Expected)), and the interaction terms. Controls
include the natural logarithm of segment assets. The sample period is from 1999 to 2019. Numbers in parentheses are standard errors.
Standard errors are clustered at the NAICS4 level. ***, **, and * indicate p-values of 1%, 5%, and 10%, respectively.

(1) (2) (3) (4) (5)
Log(Segment Sales/Segment AT)

1 (Realized ≫ Expected) -0.006 0.014 0.010 0.023** 0.019
(0.006) (0.010) (0.010) (0.011) (0.011)

Labor Exposure 0.002 0.001 0.001 0.000
(0.004) (0.004) (0.004) (0.004)

1 (Realized ≫ Expected) x Labor Exposure -0.002** -0.002* -0.003** -0.002*
(0.001) (0.001) (0.001) (0.001)

Observations 71,250 71,250 71,250 68,632 68,632
Controls Yes Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes Yes
State x Year FE Yes Yes Yes No No
NAICS2 x Year FE No No Yes No Yes
County x Year FE No No No Yes Yes
Adjusted R2 0.646 0.646 0.673 0.633 0.663

Treatment Effect for 1 (Realized ≫ Expected) ×LaborExposure
Labor Exposure=15 -0.022** -0.020** -0.019* -0.015

(0.010) (0.010) (0.011) (0.011)
Labor Exposure=20 -0.035** -0.030** -0.034** -0.026*

(0.015) (0.015) (0.015) (0.015)
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F Automation

In this section, I first present additional figures and tables that are complementary to

analyses in Table 4, 6, and 7. I then present additional tables to demonstrate the robustness

and heterogeneities of the results in Table 4.

F.1 Additional Analyses - Table 4, 6, and 7

Table IF.1 presents the treatment effects of medium-term heat shocks on firms’ capital

utilization in production by labor exposure category, based the estimation in columns (4)

and (8) of Table 4.

Table IF.2 presents the treatment effects of medium-term heat shocks on firms’ invest-

ments in robotics-related human capital by labor exposure category, based on the estima-

tion in column (2) of Table 6 Panel B. “Coefficients" represents the estimation of regression

coefficients for firms in each exposure category. “Treatment Effect (%)" represents the eco-

nomic effects relative to the sample mean. The table shows that, for firms with exposure

at the 75th percentile, the demand for robotics-related human capital increases by 32.7%

following heat shocks. Firms with the highest exposure increase the demand by 50.2%.

Table IF.3 presents the treatment effects of heat shocks on plant-level employment by

labor exposure category, based on the estimation in column (7) of Table 6 Panel C.

Figure IF.1 and Table IF.4 presents the treatment effects of heat shocks on firms’ de-

velopment of automation-related technology by labor exposure category, based on the

estimation in column (2) of Table 7.

F.2 Robustness of Table 4

Alternative Measures of Heat Shocks. Consistent with Internet Appendix E, I use a

rolling window of past 20 years to estimate estimate the 90th percentile threshold to mea-

sure medium-term heat shocks and present the results in Table IF.5. Results (untabulated)

also hold if I use a rolling window of past 10 years or a fixed reference period 1981 - 2000.

I also reconstruct the measure of heat shocks by incorporating absolute temperature lev-
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els. Specifically, I measure medium-term heat shocks if (1) a relative medium-term heat

shock happens; and (2) a county or a firm experiences more than 100 days with abso-

lute temperatures above 30◦C in summer from t − 3 to t. Table IF.6 reports the results.

For the alternative, I require 120 days with temperatures above 30◦C in summer. Results

(untabulated) continue to hold.

Controlling for Other Climate Disasters. I also follow the estimates in Internet Appendix

E and control for other types of climate events and report the results in Table IF.7. Con-

sistent with the evidence in Table IE.7, I do not find that other types of climate disasters

significantly affect firms’ capital utilization in production.

Firm-level Measure of Labor Exposure to Climate Risk. In Table IF.8, I repeat the analy-

ses in Table 4 but using the firm-level measure of labor exposure to climate risk (Equation

(5)). Results hold.

F.3 Capital Investment Rate

Additionally, I examine firms’ capital investment rates in Table IF.9. The dependent vari-

able is the logarithm of a firm’s capital investment rate, defined as total capital expen-

ditures divided by lagged total assets. Total capital expenditures are the sum of a firm’s

capital expenditures (CAPX) and R&D expenses. Columns (1) - (3) present analyses using

the full sample data. Columns (4) - (5) focus on firms that operate in counties with signif-

icant long-term temperature increases. Columns (6) - (7) consider firms in industries with

high unionization rates, while columns (8) - (9) examine firms that employ a large frac-

tion of low-skilled workers. Consistent with findings in Table 5, heat shocks positively

affect firms’ capital investment rates. The effects mainly hold among firms that operate

in counties with significant long-term temperature increases and firms with a high share

of low-skilled employees. The economic magnitudes are also large. In column (5), firms

with labor exposure at the 75th percentile experience a 3.8% increase in capital investment

rates following heat shocks.
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F.4 Heterogeneity - Social Ratings

Table IF.10 presents the impact of firms’ social ratings (S) on the treatment effects of

medium-term heat shocks on their capital utilization in production. The data on social

ratings is from the Refinitiv Environmental, Social, and Governance (ESG) database. The

results show that the positive effects of heat shocks on capital-labor ratios mainly ex-

ist among firms with low social ratings. For firms that have ratings above the sample

median, the effects are not statistically significant. This evidence is consistent with the

notion that low-S firms care less about local communities and employee welfare and thus

are more likely to cut workers and substitute them with capital assets relative to high-S

firms.

Two things to note in this analysis. First, the sample size is much smaller due to the

availability of ESG ratings from the Refinitiv database, especially in earlier years of the

sample. Second, medium-term heat shocks are defined as those in Table IF.6: the existence

of a relative medium-term heat shock (1 (Realized ≫ Expected) (M) and at least 100 days

with temperatures ≥ 30◦C in summer from t− 3 to t. The results are weaker if focusing on

relative heat shocks only (without requiring at least 100 days with temperatures ≥ 30◦C).

I use a stricter definition to increase the statistical power, considering a smaller sample

size.
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Figure IF.1. Treatment Effects of Heat Shocks on Automation Technology

This figure presents the treatment effects of medium-term heat shocks on firms’ development of
automation-related technology by labor exposure category, based on the estimation in Table 7
column (2) and Table IF.4.
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Table IF.1. Heat Shocks and Capital Utilization: Table 4

This table presents the treatment effects of medium-term heat shocks on firm-level capital utiliza-
tion in production by labor exposure category, based on the estimation in column (4) and (8) of Table 4.

Labor Exposure
Log(Capital) Log(Capital/Emp)

Treatment Effect (%) Std. Error Treatment Effect (%) Std. Error

1 -1.0 (0.009) -1.6* (0.009)
2 -0.8 (0.008) -1.3 (0.009)
3 -0.5 (0.008) -1.1 (0.008)
4 -0.2 (0.007) -0.9 (0.007)
5 0.2 (0.007) -0.6 (0.007)
6 0.3 (0.007) -0.4 (0.007)
7 0.5 (0.006) -0.2 (0.006)
8 0.8 (0.007) 0.0 (0.006)
9 1.1 (0.007) 0.3 (0.006)
10 1.3* (0.007) 0.5 (0.007)
11 1.6** (0.007) 0.7 (0.007)
12 1.8** (0.008) 0.9 (0.008)
13 2.1** (0.008) 1.2 (0.008)
14 2.3** (0.009) 1.4 (0.009)
15 2.6*** (0.010) 1.6* (0.009)
16 2.9*** (0.010) 1.9* (0.010)
17 3.1*** (0.011) 2.1* (0.011)
18 3.4*** (0.012) 2.3** (0.012)
19 3.6*** (0.013) 2.5** (0.013)
20 3.9*** (0.014) 2.8** (0.013)
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Table IF.2. Heat Shocks and Investments in Robotics-related Human Capital: Table 6 Panel B

This table presents the treatment effects of medium-term heat shocks on firms’ investments in robotics-
related human capital by labor exposure category, based on the estimation in column (2) of Table 6 Panel
B. “Coefficient Estimation" represents the estimation of regression coefficients for firms in each exposure
category. “Treatment Effect (%)" represents the economic effects relative to the sample mean.

Labor Exposure Coefficient Estimation Treatment Effect (%)

1 -0.022 -16.3
2 -0.017 -12.8
3 -0.012 -9.3
4 -0.008 -5.8
5 -0.003 -2.3
6 0.002 1.2
7 0.006 4.7
8 0.011 8.2
9 0.015 11.7

10 0.020 15.2
11 0.025* 18.7*
12 0.029** 22.2**
13 0.034** 25.7**
14 0.038** 29.2**
15 0.043** 32.7**
16 0.048*** 36.2***
17 0.052*** 39.7***
18 0.057*** 43.2***
19 0.062*** 46.7***
20 0.066*** 50.2***
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Table IF.3. Heat Shocks and Plant-level Employment: Table 6 Panel C

This table presents the treatment effects of heat shocks on plant-level employment by labor expo-
sure category, based on the estimation in column (7) of Table 6 Panel C.

Labor Exposure Treatment Effect (%) Std. Error

1 0.47* (0.002)
2 0.40* (0.002)
3 0.33 (0.002)
4 0.25 (0.002)
5 0.18 (0.002)
6 0.11 (0.001)
7 0.04 (0.001)
8 -0.03 (0.001)
9 -0.10 (0.001)
10 -0.17 (0.001)
11 -0.24** (0.001)
12 -0.31*** (0.001)
13 -0.39*** (0.001)
14 -0.46*** (0.001)
15 -0.53*** (0.002)
16 -0.60*** (0.002)
17 -0.67*** (0.002)
18 -0.74*** (0.002)
19 -0.81*** (0.002)
20 -0.88*** (0.002)
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Table IF.4. Heat Shocks and Automation Technology: Table 7

This table presents the treatment effects of medium-term heat shocks on firms’ development of
automation-related technology by labor exposure category, based on the estimation in column (2) of Table
7. “Coefficient Estimation" represents the estimation of regression coefficients for firms in each exposure
category. “Treatment Effect (%)" represents the economic effects relative to the sample mean.

Labor Exposure Coefficient Estimation Treatment Effect (%)

1 -0.004 -1.7
2 -0.003 -1.3
3 -0.002 -0.9
4 -0.001 -0.5
5 0.000 0.0
6 0.001 0.4
7 0.002 0.8
8 0.003 1.2
9 0.004 1.6

10 0.005 2.0
11 0.006 2.4
12 0.007* 2.8*
13 0.007* 3.2*
14 0.008** 3.6**
15 0.009** 4.0**
16 0.010** 4.4**
17 0.011** 4.8**
18 0.012** 5.3**
19 0.013** 5.7**
20 0.014** 6.1**
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Table IF.5. Heat Shocks and Capital Utilization in Production: A Rolling Window of Past 20 Years

This table presents robustness checks of the treatment effects of medium-term heat shocks on firm-level capital utilization in pro-
duction by using a rolling window of past 20 years to estimate the 90th percentile to identify heat shocks. The dependent variables
are the natural logarithm of total capital (Log(Capital)) in columns (1) - (4) and the natural logarithm of total capital per employee
(Log(Capital/Emp)). Total capital is the sum of a firm’s property, plant, and equipment (PPENT) and its R&D stock. R&D stock is the sum of
a firm’s past R&D expenses, assuming a 20% depreciation rate. The key independent variables are a firm’s labor exposure to climate risk
(Labor Exposure), a dummy indicating heat shocks (1 (Realized ≫ Expected) (M)), and an interaction term of the two (1 (Realized ≫ Expected)
(M) × Labor Exposure). Controls include the logarithm of total assets (Size), market-to-book ratio (M/B), book leverage (Book Leverage), cash
holdings (Cash), and a dummy indicating that a firm pays dividends (Dividend Payer). The sample period is from 1999 to 2019. Numbers
in parentheses are standard errors. Standard errors are clustered at the NAICS4 level. ***, **, and * indicate p-values of 1%, 5%, and 10%,
respectively.

(1) (2) (3) (4) (5) (6) (7) (8)
Log(Capital) Log(Capital/Emp)

1 (Realized ≫ Expected) (M) 0.009 -0.011 -0.018* -0.011 0.006 -0.020* -0.023** -0.011
(0.006) (0.008) (0.010) (0.010) (0.007) (0.010) (0.011) (0.011)

Labor Exposure -0.001 -0.002 -0.004 0.003 0.004 -0.005*
(0.002) (0.003) (0.003) (0.003) (0.003) (0.003)

1 (Realized ≫ Expected) (M) x Labor Exposure 0.003*** 0.003*** 0.003*** 0.003*** 0.004*** 0.002**
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

Observations 59,082 59,082 54,887 54,787 59,082 59,082 54,887 54,787
Controls Yes Yes Yes Yes Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes Yes Yes Yes Yes
State x Year FE Yes Yes No No Yes Yes No No
County x Year FE No No Yes Yes No No Yes Yes
County x NAICS2 FE No No No Yes No No No Yes
NAICS2 x Year FE No No No Yes No No No Yes
Adjusted R2 0.971 0.971 0.971 0.973 0.935 0.935 0.937 0.943

Treatment Effect for 1 (Realized ≫ Expected) (M) × Labor Exposure
Labor Exposure=15 0.029*** 0.032*** 0.032*** 0.032*** 0.030*** 0.020**

(0.010) (0.011) (0.012) (0.010) (0.011) (0.009)
Labor Exposure=20 0.042*** 0.048*** 0.046*** 0.049*** 0.048*** 0.031**

(0.013) (0.016) (0.016) (0.014) (0.015) (0.013)
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Table IF.6. Heat Shocks and Capital Utilization in Production: Number of Days with Temperatures ≥ 30◦C

This table presents robustness checks of the treatment effects of medium-term heat shocks on firm-level capital utilization in pro-
duction by incorporating the number of days with temperatures ≥ 30◦C. Temperature shocks are redefined by requiring the existence of
a relative medium-term temperature shock (1 (Realized ≫ Expected) (M) and at least 100 days with temperatures ≥ 30◦C in summer from
t − 3 to t. The dependent variables are the natural logarithm of total capital (Log(Capital)) in columns (1) - (4) and the natural logarithm
of total capital per employee (Log(Capital/Emp)). Total capital is the sum of a firm’s property, plant, and equipment (PPENT) and its R&D
stock. R&D stock is the sum of a firm’s past R&D expenses, assuming a 20% depreciation rate. The key independent variables are a firm’s
labor exposure to climate risk (Labor Exposure), a dummy indicating heat shocks (1 (Realized ≫ Expected) (M)), and an interaction term of
the two (1 (Realized ≫ Expected) (M) × Labor Exposure). Controls include the logarithm of total assets (Size), market-to-book ratio (M/B),
book leverage (Book Leverage), cash holdings (Cash), and a dummy indicating that a firm pays dividends (Dividend Payer). The sample
period is from 1999 to 2019. Numbers in parentheses are standard errors. Standard errors are clustered at the NAICS4 level. ***, **, and *
indicate p-values of 1%, 5%, and 10%, respectively.

(1) (2) (3) (4) (5) (6) (7) (8)
Log(Capital) Log(Capital/Emp)

1 (Realized ≫ Expected) (M) -0.000 -0.026** -0.029*** -0.021* -0.005 -0.040*** -0.047*** -0.030***
(0.006) (0.010) (0.011) (0.012) (0.007) (0.010) (0.010) (0.010)

Labor Exposure -0.001 -0.002 -0.004 0.003 0.004 -0.006**
(0.002) (0.003) (0.003) (0.003) (0.003) (0.003)

1 (Realized ≫ Expected) (M) x Labor Exposure 0.003*** 0.004*** 0.003*** 0.005*** 0.005*** 0.003***
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

Observations 59,082 59,082 54,887 54,787 59,082 59,082 54,887 54,787
Controls Yes Yes Yes Yes Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes Yes Yes Yes Yes
State x Year FE Yes Yes No No Yes Yes No No
County x Year FE No No Yes Yes No No Yes Yes
County x NAICS2 FE No No No Yes No No No Yes
NAICS2 x Year FE No No No Yes No No No Yes
Adjusted R2 0.971 0.971 0.971 0.973 0.935 0.935 0.937 0.943

Treatment Effect for 1 (Realized ≫ Expected) (M) × Labor Exposure
Labor Exposure=15 0.024*** 0.028*** 0.027*** 0.028*** 0.026** 0.019*

(0.009) (0.010) (0.011) (0.010) (0.011) (0.010)
Labor Exposure=20 0.041*** 0.047*** 0.043*** 0.051*** 0.050*** 0.035**

(0.013) (0.015) (0.015) (0.014) (0.014) (0.014)
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Table IF.7. Heat Shocks and Capital Utilization in Production: Controlling for Other Climate Events

This table presents robustness checks of the treatment effects of medium-term heat shocks on firm-level capital utilization in pro-
duction by controlling other climate events. Columns (1) - (4) controls cold temperatures and Columns (5) - (8) controls precipitation
shocks. The dependent variable is the natural logarithm of total capital (Log(Capital)) in columns (1), (2), (5) and (6). The dependent
variable is the natural logarithm of total capital per employee (Log(Capital/Emp)) in columns (3), (4), (7) and (8). Total capital is the sum
of a firm’s property, plant, and equipment (PPENT) and its R&D stock. R&D stock is the sum of a firm’s past R&D expenses, assuming
a 20% depreciation rate. The key independent variables are a firm’s labor exposure to climate risk (Labor Exposure), a dummy indicating
hheat shocks (1 (Realized ≫ Expected) (M)), existence of other climate disasters, and the interaction terms. Controls include the logarithm
of total assets (Size), market-to-book ratio (M/B), book leverage (Book Leverage), cash holdings (Cash), and a dummy indicating that a firm
pays dividends (Dividend Payer). The sample period is from 1999 to 2019. Numbers in parentheses are standard errors. Standard errors are
clustered at the NAICS4 level. ***, **, and * indicate p-values of 1%, 5%, and 10%, respectively.

(1) (2) (3) (4) (5) (6) (7) (8)

Log(Capital) Log(Capital/Emp) Log(Capital) Log(Capital/Emp)

Cold Temperatures Precipitation

1 (Realized ≫ Expected) (M) -0.018* -0.012 -0.029*** -0.017* -0.020** -0.013 -0.031*** -0.018*
(0.009) (0.009) (0.010) (0.010) (0.009) (0.009) (0.010) (0.010)

Labor Exposure -0.002 -0.004 0.004 -0.005* -0.002 -0.004 0.003 -0.006**
(0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003)

1 (Realized ≫ Expected) (M) x Labor Exposure 0.003*** 0.003*** 0.004*** 0.002** 0.003*** 0.003*** 0.004*** 0.002**
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

Other Climate Events -0.027** -0.016 -0.033** -0.015 -0.013 -0.009 -0.015 -0.005
(0.013) (0.014) (0.013) (0.014) (0.019) (0.018) (0.014) (0.014)

Other Climate Events x Labor Exposure 0.001 -0.000 0.003** 0.000 0.001 -0.000 0.003* 0.002
(0.001) (0.001) (0.001) (0.001) (0.002) (0.002) (0.002) (0.002)

Observations 54,887 54,787 54,887 54,787 54,887 54,787 54,887 54,787
Controls Yes Yes Yes Yes Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes Yes Yes Yes Yes
State x Year FE No No No No No No No No
County x Year FE Yes Yes Yes Yes Yes Yes Yes Yes
County x NAICS2 FE No Yes No Yes No Yes No Yes
NAICS2 x Year FE No Yes No Yes No Yes No Yes
Adjusted R2 0.971 0.973 0.937 0.943 0.971 0.973 0.937 0.943

Treatment Effect for 1 (Realized ≫ Expected) (M) × Labor Exposure

Labor Exposure=15 0.028*** 0.027*** 0.025** 0.017* 0.027*** 0.025*** 0.028*** 0.018*
(0.010) (0.010) (0.010) (0.009) (0.010) (0.010) (0.010) (0.009)

Labor Exposure=20 0.043*** 0.040*** 0.043*** 0.028** 0.043*** 0.038*** 0.048*** 0.029**
(0.014) (0.014) (0.014) (0.014) (0.014) (0.014) (0.014) (0.013)
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Table IF.8. Heat Shocks and Capital Utilization in Production: Firm-level Measure of Labor Exposure to Climate Risk

This table presents robustness checks of the treatment effects of medium-term heat shocks on firm-level capital utilization in production by
using the firm-level measure of labor exposure to climate risk. The dependent variables are the natural logarithm of total capital Log(Capital) in
columns (1) - (4) and the natural logarithm of total capital per employee Log(Capital/Emp) in columns (5) - (8). Total capital is the sum of a firm’s
property, plant, and equipment (PPENT) and its R&D stock. R&D stock is the sum of a firm’s past R&D expenses, assuming a 20% depreciation
rate. The key independent variables are the firm-level measure of labor exposure to climate risk (Labor Exposure), a dummy indicating medium-term
heat shocks (1 (Realized ≫ Expected) (M)), and an interaction term of the two (1 (Realized ≫ Expected) (M) × Labor Exposure). Controls include the
logarithm of total assets (Size), market-to-book ratio (M/B), book leverage (Book Leverage), cash holdings (Cash), and a dummy indicating that a firm
pays dividends (Dividend Payer). The sample period is from 1999 to 2019. Numbers in parentheses are standard errors. Standard errors are clustered
at the firm level. ***, **, and * indicate p-values of 1%, 5%, and 10%, respectively.

(1) (2) (3) (4) (5) (6) (7) (8)

Log(Capital) Log(Capital/Emp)

1 (Realized ≫ Expected) (M) 0.006 -0.012 -0.020* -0.008 0.002 -0.025** -0.033*** -0.018
(0.006) (0.010) (0.012) (0.012) (0.006) (0.010) (0.011) (0.011)

Labor Exposure -0.001 -0.000 0.000 0.003* 0.003** 0.002
(0.001) (0.002) (0.002) (0.002) (0.002) (0.002)

1 (Realized ≫ Expected) (M) x Labor Exposure 0.002** 0.003*** 0.002* 0.003*** 0.004*** 0.002*
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

Observations 59,082 59,082 54,887 54,787 59,082 59,082 54,887 54,787
Controls Yes Yes Yes Yes Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes Yes Yes Yes Yes
State x Year FE Yes Yes No No Yes Yes No No
County x Year FE No No Yes Yes No No Yes Yes
County x NAICS2 FE No No No Yes No No No Yes
NAICS2 x Year FE No No No Yes No No No Yes
Adjusted R2 0.971 0.971 0.971 0.973 0.935 0.935 0.937 0.943

Treatment Effect for 1 (Realized ≫ Expected) (M) × Labor Exposure

Labor Exposure=15 0.019** 0.023*** 0.019** 0.023*** 0.022** 0.012
(0.008) (0.009) (0.009) (0.009) (0.010) (0.009)

Labor Exposure=20 0.030*** 0.037*** 0.028** 0.039*** 0.041*** 0.022*
(0.011) (0.013) (0.013) (0.013) (0.014) (0.014)
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Table IF.9. Heat Shocks and Capital Investment Rate

This table presents the treatment effects of medium-term heat shocks on firms’ capital investment rate. Columns (1) - (3) use the full sample
data. Columns (4) - (5) focus on firms that operate in counties with significant projected long-term temperature increases. Columns (6) - (7) focus on
firms in industries with high unionization rates. Columns (8) - (9) focus on firms that employ large fractions of low-skilled workers. The dependent
variable is the logarithm of a firm’s capital investment rate defined as total capital expenditures divided by lagged total assets. Total capital
expenditures is the sum of a firm’s capital expenditures (CAPX) and R&D expenses. The key independent variables are a firm’s labor exposure to
climate risk (Labor Exposure), a dummy indicating heat shocks (1 (Realized ≫ Expected) (M)), and an interaction term of the two (1 (Realized ≫ Expected)
(M) × Labor Exposure). Controls include the logarithm of total assets (Size), market-to-book ratio (M/B), book leverage (Book Leverage), cash holdings
(Cash), and a dummy indicating that a firm pays dividends (Dividend Payer). The sample period is from 1999 to 2019. Numbers in parentheses are
standard errors. Standard errors are clustered at the NAICS4 level. ***, **, and * indicate p-values of 1%, 5%, and 10%, respectively.

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Log(Capital Investment Rate)

Full Sample CDC Labor Union Labor Skill

1 (Realized ≫ Expected) (M) -0.009 -0.034** -0.019 -0.029 -0.018 -0.046** -0.053*** -0.073** -0.049**
(0.008) (0.016) (0.013) (0.023) (0.020) (0.018) (0.019) (0.029) (0.021)

Labor Exposure 0.003 0.003 0.003 0.003 0.001 0.006 0.007* 0.008*
(0.003) (0.003) (0.005) (0.004) (0.006) (0.005) (0.004) (0.004)

1 (Realized ≫ Expected) (M) x Labor Exposure 0.003** 0.002 0.004** 0.004* 0.003 0.004* 0.006*** 0.004**
(0.002) (0.001) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

Observations 55,844 55,844 55,844 28,347 28,345 23,240 23,212 32,698 32,698
Controls Yes Yes Yes Yes Yes Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
State x Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
NAICS2 x Year FE No No No No No No Yes No Yes
Adjusted R2 0.810 0.810 0.818 0.781 0.791 0.737 0.747 0.784 0.793

Treatment Effect for 1 (Realized ≫ Expected) (M) × Labor Exposure

Labor Exposure=15 0.014 0.032** 0.038** 0.003 0.015 0.018
(0.013) (0.016) (0.018) (0.019) (0.014) (0.015)

Labor Exposure=20 0.031 0.053** 0.056** 0.022 0.044** 0.040*
(0.019) (0.024) (0.026) (0.029) (0.022) (0.023)
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Table IF.10. Heat Shocks and Capital Utilization in Production: Social Ratings

This table presents the impact of firms’ social ratings on the treatment effects of medium-term heat shocks on their capital utiliza-
tion in production. Data on social ratings is from the Refinitiv ESG database. ‘High’ and ‘Low’ denote high and low social ratings,
respectively. The dependent variable is the natural logarithm of total capital per employee (Log(Capital/Emp)). Total capital is the sum of
a firm’s property, plant, and equipment (PPENT) and its R&D stock. R&D stock is the sum of a firm’s past R&D expenses, assuming a
20% depreciation rate. The key independent variables are a firm’s labor exposure to climate risk (Labor Exposure), a dummy indicating heat
shocks (1 (Realized ≫ Expected) (M)), and an interaction term of the two (1 (Realized ≫ Expected) (M) × Labor Exposure). Controls include the
logarithm of total assets (Size), market-to-book ratio (M/B), book leverage (Book Leverage), cash holdings (Cash), and a dummy indicating
that a firm pays dividends (Dividend Payer). Note that medium-term temperature shocks are defined as those in Table IF.6. The sample
period is from 2002 to 2019. Numbers in parentheses are standard errors. Standard errors are clustered at the NAICS4 level. ***, **, and *
indicate p-values of 1%, 5%, and 10%, respectively.

(1) (2) (3) (4) (5) (6) (7) (8)
Log(Capital/Emp)

High Low

1 (Realized ≫ Expected) (M) -0.032* -0.019 -0.013 -0.003 -0.074** -0.050* -0.072* -0.079**
(0.018) (0.016) (0.022) (0.026) (0.034) (0.029) (0.041) (0.038)

Labor Exposure -0.007 -0.001 -0.009 -0.003 -0.007 0.002 -0.007 0.011
(0.005) (0.006) (0.006) (0.007) (0.006) (0.006) (0.008) (0.010)

1 (Realized ≫ Expected) (M) x Labor Exposure 0.002 0.002 -0.000 -0.000 0.010** 0.008** 0.012** 0.014***
(0.002) (0.002) (0.002) (0.003) (0.005) (0.004) (0.005) (0.005)

Observations 6,380 6,345 5,109 5,052 6,603 6,571 5,228 5,176
Controls Yes Yes Yes Yes Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes Yes Yes Yes Yes
State x Year FE Yes Yes No No Yes Yes No No
County x Year FE No No Yes Yes No No Yes Yes
NAICS2 x Year FE No Yes No Yes No Yes No Yes
Adjusted R2 0.977 0.979 0.978 0.980 0.974 0.977 0.975 0.977

Treatment Effect for 1 (Realized ≫ Expected) (M) × Labor Exposure
Labor Exposure=15 0.076 0.066* 0.103** 0.125**

(0.049) (0.038) (0.052) (0.054)
Labor Exposure=20 0.126* 0.104* 0.161** 0.193**

(0.073) (0.056) (0.076) (0.078)
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G Implications

In this section, I present additional results to discuss the broad implications of firms’

adaptation to climate change through automation, with a focus on firms’ resilience to heat

challenges (Table IG.1) and the macro-level consequences for industry dynamics (Table

IG.2 and IG.3, together with Table 8). Detailed descriptions of the results are presented in

Section 7.
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Table IG.1. Heat Shocks, Capital Utilization in Production, and Firm Resilience

This table presents results on firms’ resilience to short-term heat shocks, conditional on existing capital utilization in production.
Columns (1) - (4) focus on a subsample of firms with capital-labor ratios (Log(Capital/Emp)) below the industry median, and columns (5) -
(8) focus on a subsample of firms with capital-labor ratio above the industry median. The dependent variable is the natural logarithm of
sales per employee (Log(Sales/Emp)). The key independent variables are a firm’s labor exposure to climate risk (Labor Exposure), a dummy
indicating short-term heat shocks (1 (Realized ≫ Expected)), and an interaction term of the two (1 (Realized ≫ Expected) × Labor Exposure).
Controls include the logarithm of total assets (Size), market-to-book ratio (M/B), book leverage (Book Leverage), cash holdings (Cash), and
a dummy indicating that a firm pays dividends (Dividend Payer). The sample period is from 1999 to 2019. Numbers in parentheses are
standard errors. Standard errors are clustered at the NAICS4 level. ***, **, and * indicate p-values of 1%, 5%, and 10%, respectively.

(1) (2) (3) (4) (5) (6) (7) (8)

Log(Sales/Emp)

Low Capital Utilization High Capital Utilization

0.026** 0.028** 0.034** 0.026* 0.003 0.010 0.008 0.005
1 (Realized ≫ Expected) (M) (0.010) (0.012) (0.015) (0.015) (0.011) (0.014) (0.016) (0.016)

0.005** 0.006** 0.004 -0.000 0.007* 0.007* 0.008** -0.002
Labor Exposure (0.002) (0.002) (0.003) (0.002) (0.004) (0.004) (0.003) (0.003)

-0.003*** -0.003*** -0.004*** -0.003** -0.001 -0.001 -0.001 -0.001
1 (Realized ≫ Expected) (M) x Labor Exposure (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

Observations 26,005 25,931 22,857 22,760 28,333 28,255 25,336 25,241
Controls Yes Yes Yes Yes Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes No No No Yes No No No
State x Year FE No Yes No No No Yes No No
County x Year FE No No Yes Yes No No Yes Yes
County x NAICS2 FE No No No Yes No No No Yes
NAICS2 x Year FE No No No Yes No No No Yes
Adjusted R2 0.889 0.890 0.891 0.903 0.848 0.850 0.853 0.863

Treatment Effect for 1 (Realized ≫ Expected) (M) × Labor Exposure

Labor Exposure=15 -0.015* -0.016* -0.023* -0.020
(0.008) (0.009) (0.012) (0.013)

Labor Exposure=20 -0.028** -0.030** -0.042*** -0.036**
(0.011) (0.013) (0.016) (0.018)
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Table IG.2. QCEW Employment and Wages: Summary Statistics

This table presents summary statistics of the QCEW-based sample. The sample is at the county-by-NAICS4 industry level. Log(Emp) is the
natural logarithm of total employment. ∆ Log(Emp) is the annual change in the natural logarithm of total employment. Emp Share is the
employment share. Log(Wages) is the natural logarithm of total wages. ∆ Log(Wages) is the annual change in the natural logarithm of total
wages. Wages is the wage share. Labor Exposure denotes an industry’s labor exposure to climate risk. 1 (Realized ≫ Expected) (M) denotes a
dummy indicating medium-term heat shocks in a county. The sample period is from 1999 to 2019.

Variables N Mean P5 Median P95 SD

Log(Emp) 1,756,215 6.033 4.710 5.817 8.199 1.059

∆ Log(Emp) 1,626,173 0.007 -0.197 0.008 0.207 0.112

Emp Share 1,756,215 2.458 0.086 0.849 12.292 4.345

Log(Wages) 1,756,215 16.404 14.624 16.212 18.853 1.240

∆ Log(Wages) 1,626,173 0.037 -0.197 0.036 0.270 0.129

Wage Share 1,756,215 2.388 0.069 0.805 11.752 4.205

1 (Realized ≥ Expected) (M) 1,756,215 0.294 0.000 0.000 1.000 0.456

Labor Exposure 1,756,215 10.520 1.000 11.000 20.000 5.925
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Table IG.3. Heat Shocks and Industry Dynamics: Wages

This table presents the treatment effects of medium-term heat shocks on industry dynamics across counties. The size of a NAICS4
industry in a county is measured using total wages from the QCEW data. The dependent variable is the natural logarithm of total wages
(Log(Wages), columns (1) - (3)), the annual change in the natural logarithm of total wages (∆ Log(Wages), columns (4) - (6)), and the wage
share ((Wage Share), columns (7) - (9)). The key independent variables are an industry’s labor exposure to climate risk (Labor Exposure), a
dummy indicating medium-term heat shocks in a county (1 (Realized ≫ Expected) (M)), and an interaction term of the two (1 (Realized ≫
Expected) (M) × Labor Exposure). Columns (1) - (3) controls for Log(Wages) at t − 3 as a proxy for industry size. The sample period is from
1999 to 2019. Numbers in parentheses are standard errors. Standard errors are double clustered at the NAICS4 and the county levels. ***,
**, and * indicate p-values of 1%, 5%, and 10%, respectively.

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Log(Wages) ∆ Log(Wages) Wage Share

Full Sample EMP≤800 EMP≤400 Full Sample EMP≤800 EMP≤400 Full Sample EMP≤800 EMP≤400

1 (Realized ≫ Expected) (M) x Labor Exposure -0.0010*** -0.0011*** -0.0013*** -0.0004*** -0.0005*** -0.0004*** -0.0015* -0.0023*** -0.0026***

(0.0003) (0.0003) (0.0003) (0.0001) (0.0001) (0.0001) (0.0009) (0.0008) (0.0008)

Observations 1,379,550 1,009,246 730,540 1,614,263 1,196,530 880,603 1,741,911 1,300,556 966,013

Controls Yes Yes Yes No No No No No No

County x Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes

County x NAICS4 FE Yes Yes Yes Yes Yes Yes Yes Yes Yes

Adjusted R2 0.965 0.918 0.896 0.0678 0.0567 0.0516 0.960 0.965 0.970
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