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Abstract

Rising temperatures induced by climate change generate two types of climate risks that raise
labor costs of firms relying on outdoor workers: (1) physical risk - lower labor productivity
in high temperatures; (2) regulatory risk - governments introducing regulations to protect
workers against heat hazards. I find that firms exposed to climate change through the la-
bor channel have higher capital-labor ratios, especially when managers believe in climate
change or when jobs are easy to automate. After experiencing shocks to physical (abnor-
mally high temperatures) and regulatory (the adoption of the Heat Illness Prevention Stan-
dard (HIPS) in California) risks, high-exposure firms switch to more capital-intensive pro-
duction functions. These firms also respond by innovating more, especially in technologies
facilitating automation and reducing labor costs. Furthermore, labor exposure to climate
change impedes job creation and hurts workers’ earnings. Overall, the findings highlight
that climate change accelerates automation in occupations exposed to rising temperatures.
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"...extreme heat is now the leading weather-related killer in America. Rising temperatures pose an im-
minent threat to millions of American workers exposed to the elements..."

"Today, I am mobilizing an all-of-government effort to to protect workers, children, seniors, and at-risk
communities from extreme heat."

- Joe Biden, 09/20/2021

1 Introduction

Rising temperatures induced by climate change have posed severe threats to human health,

especially to workers working in outdoor environments (e.g., Naughton et al., 2002; Patz et al.,

2005; Luber and McGeehin, 2008; Gubernot et al., 2015). For example, Park et al. (2021) estimate

that hot temperatures have caused approximately 360,000 additional injuries in California from

2001 to 2018.1 More worryingly, the threats are expected to continue and will become even

more pronounced, considering that unusually hot temperatures have become more common,

and extreme heat events have become more frequent and intense across the U.S.2 However,

little work has been done to understand how firms are affected by their workers’ exposure to

climate change and how they cope with the challenges.

This paper aims to bridge this gap by exclusively identifying a labor channel of firms’ expo-

sure to climate change and studying what mitigation measures firms have taken. More specif-

ically, I examine how the labor-channel exposure to climate change affects firms’ decisions on

input mix. My key finding is that high-exposure firms adopt more capital-intensive production

functions because rising temperatures raise high-exposure firms’ labor costs. In response, these

firms use capital to replace the expensive labor, resulting in higher capital-labor ratios.

The rising labor costs are driven by two types of climate risks induced by climate change -

physical and regulatory risks. The physical risk refers to the detrimental effects of high tem-

peratures on labor productivity. For example, Graff Zivin and Neidell (2014) document that

1A report by the Atlantic Council estimates that extreme heat explains around 120,000 occupational injuries
per year, and this number could increase nearly fourfold to almost 450,000 without adaptation measures taken.
Further, over 8,500 deaths annually are associated with average temperatures above 90°F, which is projected to
increase nearly sevenfold to 59,000 by 2050. See "Extreme Heat: The Economic and Social Consequences for the
United States".

2The average surface temperature across the U.S. has risen at an average rate of 0.31 to 0.54°F per decade since
the late 1970s. In addition, the number, duration, and intensity of heat waves are all increasing rapidly. See
"Climate Change Indicators: U.S. and Global Temperature" and "Climate Change Indicators: Heat Waves".
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high temperatures reduce workers’ working time across heat-sensitive industries. Somanathan

et al. (2021) show that high temperatures in India reduce workers’ productivity and increase

their absenteeism, leading to a 2% fall in annual plant output. The regulatory risk arises from

the possibility of governments introducing regulations to protect workers against heat hazards.

These regulations, such as the Heat Illness Prevention Standard (HIPS) passed in California in

2005, often require employers to provide employees with more training and protection, leading

to higher operating costs for firms.

Crucial to my empirical investigations is the measurement of a firm’s exposure to climate

change through the labor channel. To this end, I obtain data on occupations needed in each in-

dustry from the Occupational Employment and Wage Statistics (OEWS) and each occupation’s

outdoor activity score from the O*NET program. The score is based on how often a given job

requires working outdoors. Then, I construct an index measuring a firm’s labor exposure to

climate change at the four-digit NAICS level. This index is a weighted average of all occupa-

tions’ outdoor activity scores within a four-digit NAICS industry. The weight is the percentage

of people working in a given occupation in a four-digit NAICS industry. Based on this index,

I create a rank variable of labor exposure to climate change - LECC, ranging from 1 to 10, with

10 indicating the highest exposure.

My first set of analyses examines the association between firms’ labor exposure to climate

change and capital-labor ratios over the period 2002 - 2019. The capital-labor ratio is measured

as the natural logarithm of a firm’s property, plant, and equipment divided by its number of

employees. I find that firms with higher exposure to climate change through the labor channel

exhibit higher capital-labor ratios. The finding is also economically significant. A one-unit

increase in LECC is associated with an 18.3% increase in the capital-labor ratio. The evidence

suggests that firms that are more exposed to climate change through the labor channel adopt

more capital-intensive production functions. Further decomposition suggests that both higher

capital investment and lower employment contribute to the capital-labor ratio gap.

I then conduct several cross-sectional tests to explore the underlying mechanisms driving

the capital-labor ratio gap. I first find that the results are weaker in Republican-led firms, con-

sistent with the notion that Republicans care less about climate change. Second, the results are

stronger in industries where jobs are easy to automate. This is consistent with the idea that
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a prerequisite for upgrading production functions is that automated capital is a substitute for

outdoor workers. Otherwise, firms will have to continue relying on outdoor workers. The evi-

dence supports that firms adapt to climate change by increasing automation. Third, the results

are weaker when labor unions protect employees from being fired, suggesting that labor unions

slow down firms’ adaptation actions. Overall, cross-sectional analyses imply that managers’

beliefs about climate change and the possibilities of substituting capital for labor are critical in

firms’ adjustment toward capital-intensive production processes.

Next, I design two empirical strategies to address endogeneity issues in the baseline results

and to pin down the underlying mechanisms. In the first strategy, I utilize variations in hot

temperatures across counties and examine how firms respond to local temperature shocks.

Specifically, I focus on relative temperature shocks that are exogenous to firms’ operations,

which occur when a county’s daily temperatures in the summertime (May - September) exceed

the 90th percentile of local summer temperature records. These shocks not only directly hurt

workers’ productivity (realized physical risks) but also cause individuals to revise their beliefs

about climate change upward and pay more attention to climate risks (expected higher physical

and regulatory risks) (e.g., Joireman et al., 2010; Li et al., 2011; Sisco et al., 2017; Choi et al., 2020).

The threats caused by realized physical risks and expected higher physical and regulatory risks

before long together incentivize managers to adjust to higher capital-labor ratios to optimize

their production.

Using temperature shocks matched to firms’ operating locations, I first investigate the phys-

ical risk mechanism by examining labor productivity. I find that hot temperature shocks signif-

icantly hurt labor productivity, leading to lower sales and sales per employee. The economic

effects are also significant. After severe temperature shocks, the sales and sales per employee

of a firm with a climate exposure ranking of six are 3.6% and 2.2% lower than those of a firm

with a climate exposure ranking of four, respectively.

Then, I test the effects of temperature shocks on production functions. The results show

that high-exposure firms adjust production functions towards higher capital-labor ratios after

the shocks. In particular, in two years after the shocks, a firm with a climate exposure ranking

of six increases its capital-labor ratio by 3% relative to a firm with a climate exposure ranking

of four. More importantly, the adjustment only happens when short-term temperature shocks
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agree with long-term temperature projections. Put differently, firms only respond to a one-time

temperature shock when model-based climate projections suggest that long-term temperature

changes are acute. Otherwise, managers do not take short-term temperature shocks as indi-

cators of climate change and thus do not make adjustments to existing production functions.

Combined together, the evidence suggests that the physical risk mechanism alongside rising

temperatures is a critical driver of high-exposure firms’ adjustment towards capital-intensive

product functions.

In the second identification strategy, I design a difference-in-differences test based on the

HIPS adopted in California in 2005 to study the regulatory risk mechanism. The HIPS includes

new specific requirements that employers should provide their workers with enough drinking

water, shade for rest, medical support, training, and other sufficient means and safety plans

to abate heat hazards. Violations of these requirements can damage a firm’s reputation and

expose it to serious litigation risks. Hence, the bill significantly raises firms’ operating costs

(realized regulatory risks). In addition, this bill catches people’s attention to climate-related reg-

ulations in the labor market, making them anticipate that more and tighter rules will likely be

implemented, and stricter enforcement will be conducted as temperatures rise (expected higher

regulatory risks). Importantly, the bill’s adoption is a result of cumulative historical tempera-

ture threats rather than a one-time spike in temperatures or significant changes in regulatory

environments. Therefore, the adoption is likely exogenous from a given firm’s perspective.

To conduct the difference-in-differences analyses, I split firms into two groups - firms with

high labor exposure to climate change in California as the treated group and firms with low

labor exposure in California as the control group. This is because high-exposure firms have

many outdoor workers and thus are more affected by the bill. Estimations on dynamic treat-

ment effects show no significant differences in capital-labor ratios between the treated and the

control groups in the pre-treatment period, supporting the parallel trends assumption. Follow-

ing the adoption of the HIPS, treated firms increase their capital-labor ratios by 15.1%, relative

to control firms. The evidence implies that the regulatory risk mechanism alongside rising

temperatures is another critical factor driving firms’ adjustment towards capital-intensive pro-

duction functions.

I further investigate firms’ innovation strategies in the adaptation process, as existing lit-
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erature has documented the importance of technological advancement in shaping a capital-

intensive economy (e.g., Karabarbounis and Neiman, 2014; Acemoglu and Restrepo, 2019,

2020). I find that high-exposure firms significantly increase both R&D spending and patent

filings after temperature and regulatory shocks. These patents are also more valuable, i.e., re-

ceiving more citations and having higher market value. In addition, I examine whether the

patents are used to facilitate the automation process by using two patent classifications: au-

tomation patents from Mann and Püttmann (2021) and process innovations from Bena and

Simintzi (2019). Specifically, automation patents are those used to develop a device that carries

out a process independently of human intervention. Process innovations describe new ways

to produce an existing good with lower labor costs. Empirical results show that high-exposure

firms are more likely to develop automation patents and process innovations after temperature

and regulatory shocks. For example, the probability of having an automation patent among

high-exposure firms increases by 3.7%, and the probability of having one process claim in-

creases by 5.2%, relative to low-exposure firms.

Firm-level analyses thus far have provided consistent evidence that rising temperatures

increase firms’ labor costs, and, in response, they use more capital in production. The firm-level

effects may add up to an economically important magnitude that leads to an industry-wise

employment contraction. I test this conjecture using the job creation data from the Quarterly

Workforce Indicators (QWI). I find that the labor-channel exposure to climate change impedes

industry expansion and hurts workers’ earnings after temperature and regulatory shocks. In

particular, high-exposure industries create fewer new jobs, and workers in these industries

see lower earnings growth. The findings indicate that climate change leads to job and income

losses for outdoor workers, lending further support to prior results.

The advance in the climate finance literature has broadened our understanding of the im-

pact of climate change on the financial market and firms (e.g., Bernstein et al., 2019; Addoum

et al., 2020; Krueger et al., 2020; Painter, 2020; Addoum et al., 2021; Ilhan et al., 2021; Pankratz

and Schiller, 2021). However, little attention has been paid to how rising temperatures may

affect firms’ human capital. This paper fills the void by identifying a labor channel of firms’

exposure to climate change, and in particular, showing that firms address the challenges by
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substituting capital for labor, i.e., more capital investment and less hiring.3 More generally, this

paper highlights that climate change accelerates automation in occupations exposed to rising

temperature threats. In this regard, this paper echoes the call for more research on adaptation

to climate change (Fankhauser, 2017).

To the best of my knowledge, my paper is the first to construct a measure of firms’ expo-

sure to climate change through the labor channel. In this regard, this paper contributes to the

literature trying to measure firms’ climate risk exposure in various ways, e.g., asset exposure

to floods or sea level rise, carbon emissions, ESG scores, textual analyses of earnings confer-

ence calls or 10-K filings (e.g., Bernstein et al., 2019; Engle et al., 2020; Li et al., 2020; Sautner

et al., 2022; Bolton and Kacperczyk, 2021; Nagar and Schoenfeld, 2022). However, few works

quantify the temperature threats to firms’ human capital. Therefore, this paper suggests a new

angle to assess firms’ climate risk exposure, echoing the call for improvements in measuring

climate risk exposure in different asset classes in Giglio et al. (2021).

With this measure, I propose and identify two risk sources in the labor channel - physical

and regulatory risks. My tests on the physical risk mechanism contribute to the discussion

about the negative impact of high temperatures on firm performance, regarding which exist-

ing evidence is mixed. For example, Addoum et al. (2020) find no evidence that exposure

to extreme temperatures affects establishment-level or firm-level sales or productivity in the

U.S. Their follow-up work documents bi-directional effects of temperature exposure on firms -

some benefit but some get hurt (Addoum et al., 2021). In contrast, other works show that in-

creased exposure to high temperatures reduces firms’ operating performance (Custodio et al.,

2021; Pankratz et al., 2021). The negative effects also transmit along supply chains to firms’

customers (Pankratz and Schiller, 2021). My analyses show that high temperatures negatively

affect firm performance through the physical risk mechanism in the labor channel. Regarding

3Li et al. (2020) find that firms that mention more climate-related words in earnings conference calls increase their
capital expenditure but cut R&D spending. They also document mixed effects on employment. Their work focuses
more on developing a measure of firms’ climate exposure and does not explain why firms invest differently.
Meanwhile, Jin et al. (2021) find that firms exposed to high temperatures over the past five years cut employment,
which they argue is because of reduced local consumption demand. My paper diverges from theirs by identifying
two risks embedded in the labor-channel exposure to climate change - reduced labor productivity and increased
labor protection. Hence, my paper explains why firms cut employment and increase capital and R&D investments.
In addition, my results hold in non-consumer-oriented industries, indicating that demand-side forces do not likely
drive my findings.
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regulatory risks, prior works mainly focus on environmental policies (e.g., Ivanov et al., 2021;

Bartram et al., 2022; Seltzer et al., 2022). This paper departs from those studies and focuses

on climate-induced regulations in the labor market, i.e., regulations protecting workers against

heat hazards. These regulations significantly raise firms’ labor costs and thus incentivize them

to adopt more capital-intensive production functions.

This paper also adds to the literature on labor and finance, specifically on how frictions in

labor markets affect corporate investments and outcomes. Previous works have explored how

the adoption of labor-savings technologies depends on rigidities in the labor markets (e.g.,

Ouimet et al., 2020; Bena et al., 2021; Qiu and Dai, 2022). In line with these studies, I pro-

vide empirical evidence which highlights that climate-induced rising labor costs facilitate the

adoption of labor-saving production methods. Meanwhile, both lost labor productivity and in-

creased labor protection boost firms’ innovation efforts, especially in technologies that facilitate

automation and reduce reliance on labor.

Last, a striking trend in the economy over the past several decades is the decline of the

labor share and the rise of automation, driven by both the availability of cheaper and more

efficient capital goods and the fast-growing labor costs (e.g., Karabarbounis and Neiman, 2014;

Acemoglu and Restrepo, 2019, 2020). This paper proposes a new force driving the increase of

labor costs and the shift to a capital-intensive economy: rising temperatures induced by climate

change. In response, firms resort to automation to maintain profit margins.

The paper proceeds as follows. Section 2 describes the conceptual framework. Section 3

describes data and measures used in empirical analyses. Section 4 presents the baseline and

cross-sectional results. Section 5 presents evidence identifying the underlying mechanisms

(physical and regulatory risks) and addressing endogeneity issues. Section 6 investigates firms’

innovation activities and section 7 studies industry dynamics. Section 8 concludes the paper.
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2 Conceptual Framework

2.1 Climate Change and Labor Costs

Climate risks can be classified into two types - physical risk and transition risk (Giglio et al., 2021;

Stroebel and Wurgler, 2021).4 In this paper, I argue that both physical and regulatory (one type

of transition risks) risks contribute to the rising labor costs of firms relying on outdoor workers

as temperatures increase.

Physical risk in this paper refers to the negative effects of high temperatures on outdoor

workers’ labor supply and productivity. This is because being exposed to heat can cause a series

of heat-related illnesses (e.g., Naughton et al., 2002; Luber and McGeehin, 2008), resulting in

severe threats to outdoor workers’ health and therefore limiting their abilities to work. Existing

studies have shown that workers’ working hours are significantly shortened during hot days,

implying substantial contractions in labor supply (e.g., Graff Zivin and Neidell, 2014; Dillender,

2021). In addition, hot temperatures hurt workers’ both physical and cognitive performance

(Epstein et al., 1980; Galloway and Maughan, 1997), leading to lower working productivity

and efficiency (Somanathan et al., 2021; Zhang et al., 2018). Importantly, even the world’s

wealthiest economy is subject to non-trivial heat-related output losses (Deryugina and Hsiang,

2014; Burke et al., 2015; Behrer and Park, 2017).5 Considering the high rigidity in workers’

wages (Taylor, 1999), the lost labor productivity significantly raises firms’ operating costs and

thus hurts firms’ profit margins.

Regulatory risk in this paper refers to governments introducing regulations to protect work-

ers against heat hazards. As climate change intensifies, rising temperature threats to workers’

health have caught the attention of various U.S regulators. In response, regulators have urged

4Physical risk refers to the risk that the increasing frequency and severity of climate-related weather events or
long-term changes in climate patterns may directly cause significant economic costs and financial losses. For
example, rising sea levels may inundate communities in coastal areas, and wildfires may destroy residential prop-
erties and corporate warehouses. Transition risk refers to the risk associated with uncertain financial impacts due
to the transition to a low-carbon economy. Examples include changes in policies (e.g., a carbon tax), technological
advances, and shifts in consumer preferences and social norms away from high-carbon activities, etc.

5A report by the Atlantic Council estimates that the U.S. loses approximately $100 billion annually from heat-
induced labor productivity losses, and the number will double by 2030 and quintuple by 2050 if no actions were
to be taken to reduce greenhouse gas emissions. By comparison, the record-breaking U.S. hurricane season in
2020 caused an estimated $60 - $65 billion in economic losses. See "Extreme Heat: The Economic and Social
Consequences for the United States".
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all parties to take action to address the challenges. For instance, the Environmental Protection

Agency (EPA) stated that "employers, safety professionals, and workers should stay informed about

emerging issues and hazards associated with climate change to better develop plans that address worker

safety and health." Appendix A provides additional evidence of regulators’ rising attention to

climate threats. Generally speaking, these regulations require employers to provide employees

more protection, e.g., rest, training, compensation, and medical support. Enforcing these rules

significantly increases firms’ labor costs and, therefore, presents big challenges to firms’ oper-

ations. In section 5.2.1, I provide institutional background on these regulations. I also discuss

the HIPS passed in California and its enforcement and impact on firms.

2.2 Climate Change and Production Functions

Assume that firms produce goods and services with two factors: capital (K) and labor (L).

Firms choose the optimal capital and labor mix given the costs of capital (r) and labor (w). That

is, firms try to minimize production costs per unit of output.

As discussed in section 2.1, over time, intensifying climate change raises firms’ labor costs,

resulting in higher relative costs of labor to capital - w/r. The underlying mechanisms are

physical and regulatory risks. These risks are not evenly distributed across years. Rather, they

reflect large downside scenarios, often manifesting as rare but big destructive climate events

or regulatory changes in the labor market. The most relevant climate events to this paper are

abnormal heat waves, which are unexpected long-lasting high temperatures that negatively

affect workers’ health and productivity, leading to significant disruptions to firms’ operations.

An example of regulatory changes is the HIPS adopted in California in 2005. The heat events

and regulatory changes are realized climate risks that push up labor costs higher than expected,

warning firm managers of vulnerabilities of current production facilities. Consequently, these

climate and regulatory shocks are indicators that managers should upgrade their production

functions to better adapt to rising climate threats.

These salient heat events also make managers and regulators revise their beliefs about cli-

mate change upward and pay more attention to climate risks - expected higher physical and regu-

latory risks (e.g., Joireman et al., 2010; Li et al., 2011; Sisco et al., 2017; Choi et al., 2020). Mean-

while, the HIPS catches people’s attention to climate-related regulations in the labor market,
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making them anticipate that more and tighter rules will likely be implemented, and stricter en-

forcement will be conducted as temperatures rise - expected higher regulatory risks. These revised

expectations regarding climate risks also incentivize firm managers to upgrade their produc-

tion facilities to better prepare for future climate and regulatory shocks.

The above discussions suggest that both abnormal heat events and regulatory changes are

key moments for firms to make major adjustments to their production functions. Specifi-

cally, firms respond to these climate and regulatory shocks by adjusting toward more capital-

intensive production processes, which allows them to reduce reliance on labor and thus avoid

increasing labor costs driven by rising climate risks.

Assume that all firms face the same capital menu and costs but heterogeneities in labor cost

w affected by climate change. Then, firms that are more exposed to climate change through the

labor channel face higher w/r and thus should have higher capital-labor ratios.

Hypothesis: Firms whose labor is more exposed to climate change will adopt more capital-

intensive production functions to minimize the impact of rising temperatures on their labor

costs.

3 Data and Measures

3.1 Labor Exposure to Climate Change

To construct the measure of labor exposure to climate change, I first obtain the industry-level

occupational data from the Occupational Employment and Wage Statistics (OEWS) provided

by the U.S. Bureau of Labor Statistics (BLS). This data includes occupations needed in each

industry (at the three-digit SIC level from 1997 to 2001 and the four-digit NAICS level from

2002 onwards), wage estimates for each occupation, and the number of employees working in

each occupation. This data is collected through annual surveys that track employment across

about 800 occupations and almost all industries from about 200,000 non-farm establishments

in the U.S. every six months, not including self-employed workers.

I also collect data on occupational outdoor activity from the U.S. Department of Labor’s

O*NET program. The O*NET program on work context gives each occupation a score between
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0 and 100 based on the following question - "How often does this job require working outdoors,

exposed to all weather conditions?". The higher the score is, the more outdoor time an occupation

requires to perform the job. Hence, this score helps quantify temperature threats workers face.

Table 1 Panel A presents some examples of occupations with high, medium, or low expo-

sure to weather from the O*NET program. Examples of high-exposure occupations include

parking enforcement workers, driver/sales workers, gas plant operators, ship engineers, etc.

Most jobs of these occupations are performed in an outdoor environment with direct expo-

sure to all weather conditions. Examples of medium-exposure occupations include real estate

sales agents, automotive service technicians and mechanics, civil engineers, retail salespersons,

etc. These occupations usually have balanced indoor and outdoor working time. Examples of

low-exposure occupations include industrial engineers, human resource specialists, computer

hardware engineers, lawyers, pharmacists, etc. Jobs of these occupations are mainly performed

indoors with little chance of being affected by the weather.

With the OEWS and the O*NET data, I construct an index of labor exposure to climate

change following prior works (Belo et al., 2017; Ghaly et al., 2017). Specifically,

Labor Exposure to Climate Change Indexjt =

Kjt

∑
k=1

(
Ejkt

Ejt
∗ Zk

)
(1)

where j denotes industry, k denotes occupation, Kjt is the total number of occupations in in-

dustry j, t denotes year, Ejkt is the number of employees working in occupation k in industry j,

Ejt is the total number of employees in industry j, and Zk is the occupational score of outdoor

activity from the O*NET program. Thus, the index is a weighted average of all occupations’

exposure to weather in a four-digit NAICS industry. The weight is the percentage of employ-

ees working in a given occupation in an industry. Based on this index, I create a rank variable

LECC, ranging from 1 to 10, with 10 indicating the highest exposure.

Table 1 Panel B presents examples of industries with high, medium or low exposure to

climate change based on the LECC in 2015. At the high end, as expected, high-exposure in-

dustries are those that need most outdoor workers, such as logging, postal service, oil and gas

extraction, basic chemical manufacturing, etc. Examples of medium-exposure industries in-
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clude dairy product manufacturing, tobacco manufacturing, employment services, radio and

television broadcasting, etc. At the low end, hardware manufacturing, motor vehicle manufac-

turing, office administrative services, and legal services are examples of low-exposure indus-

tries. Interestingly, four-digit NAICS industries in the same three-digit NAICS category can

have very different exposure ranks - 8 for the facilities support services industry (5612), 5 for

the employment services industry (5613) and 1 for the office administrative services industry

(5611).

In Appendix B, I validate the measure LECC by showing that managers of high-exposure

firms discuss more climate-related issues in earnings conference calls and 10-K filings. This

suggests that a firm’s reliance on outdoor workers does expose the firm to significant climate

risks, which builds the foundation for studying firms’ adaptation to the labor-channel exposure

to climate change.

In Appendix C.2, I construct a firm-level measure by adding information on firms’ business

operations across industries. The correlation between the industry-level and the firm-level

indexes is 0.93. Results are robust to the firm-level measure. I use the industry-level measure

in my analyses for simplicity.

3.2 Sample Construction

The main sample used in empirical analyses starts from the Compustat and spans the period

2002 - 2019.6 I exclude firms from the financial or utility industries. Firms headquartered

outside of the U.S. are also dropped. Information on firms’ historical headquarter state and

county and industry is from the "company header history" file in the legacy CRSP/Compustat

Merged database.

Data on establishment-level employment and sales is from Your Economy (YE) Time Series,

provided by the Business Dynamics Research Consortium (BDRC) at the University of Wis-

consin. YE Time Series tracks all establishments at their unique locations from 1998, including

6I choose 2002 as the beginning year to avoid the inconsistency of industry classification in the OEWS data -
three-digit SIC code before 2002 and four-digit NAICS code from 2002 onwards. Also, there were few discussions
on the influence of climate change on the financial market in the 1990s. Nevertheless, results remain robust if I
extend the sample back to 1997 by renewing the measure based on three-digit SIC codes for the 1997-2001 period.
I choose 2019 as the ending year to avoid disruptions to production caused by the Covid-19 pandemic.
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for-profit (both privately-owned and publicly-traded), non-profit, agriculture, and government

establishments. All establishments covered by YE Time Series are in-business. Businesses that

are created for the purpose of housing financial, real estate, and tax reporting entities, or are

suspected of never actually conducting commercial activities, are not included in YE Time Se-

ries. The data also provides detailed industry classifications for each establishment.

I obtain data on abnormal temperature patterns from May to September in each county

and year in the U.S. from the Historical Temperature & Heat Index managed by the Centers for

Disease Control and Prevention (CDC). The data includes the number of extreme heat days, the

number of extreme heat events, daily estimates of maximum temperatures, etc. I complement

the CDC data with daily data on historical temperature and precipitation records from the

Global Historical Climatology Network (GHCN) database, provided by the National Centers

for Environmental Information (NCEI). The data is collected from more than 100,000 stations

across the globe. I match the stations to each county in the U.S through geographic coordinates.

The CDC also provides data on long-term temperature projections. The raw data is from the

Localized Constructed Analogs (LOCA), which is derived from 32 Coupled Model Intercom-

parison Project (CMIP5) models that are widely used in the climate science literature (Hurrell

et al., 2011). The projections are estimated for a high emissions scenario (the Representative

Concentration Pathway (RCP) 8.5) and a low emissions scenario (RCP 4.5), respectively. The

CDC processes the raw data and aggregates it at the county level. The data gives projected dif-

ferences in extreme heat days between the time period selected and the referent period (1976

– 2005) for both emission scenarios. There are three time periods available: 2016 - 2045, 2036 –

2065, and 2070 – 2099, of which I use the 2016 - 2045 period as it is more relevant to the study.

In addition, I obtain the following datasets from various sources for empirical analyses.

[1] ExecuComp

Data on names, titles, tenure, and annual compensations of top managers of the S&P 1500

firms is from the ExecuComp.

[2] Individual Political Contributions

Data on individuals’ political contributions is from the Federal Election Commission

(FEC). This data provides complete records of individuals’ political contributions to Re-
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publican or Democratic Senate, House, and presidential candidates, and to party com-

mittees established by candidates and political parties to collect and manage campaign

funds. The raw data covers political campaigns in federal elections in the U.S. starting in

1975. Initially, any contribution of at least $500 was required to be disclosed to FEC. In

1989, the threshold was reduced to $200. The data reports detailed information on each

individual’s name, address, occupation, employer, the contribution date, amount, and the

political party of the recipient entity. I follow the literature to clean the data and merge it

with ExecuComp and Compustat using both individuals’ and employers’ names. To en-

sure accuracy, I only keep matched pairs with a matching score above 0.6 and manually

check each pair.

[3] Workplace Automation

Data on occupational automation score is from the O*NET program. It reports the degree

of automation for each occupation based on the question - "How automated is the job?".

[4] Labor union

Data on industry-level union coverage is from the Union Membership and Coverage

Database at www.unionstats.com, maintained by Barry Hirsch and David Macpherson.

[5] Innovation

Data on firms’ patenting activities is from Kogan et al. (2017). It includes the applicant’s

PERMNO number, patent number, filing year, grant year, forward citations and the esti-

mated patent value, etc.

Data on the classification of automation patents is from Mann and Püttmann (2021). The

classification is based on textual information in patents. Specifically, the authors apply a

machine learning algorithm to all US patents granted from 1976 to 2014 to identify patents

related to automation - a device that carries out a process independently of human inter-

vention. The device can be a physical machine, a combination of machines, an algorithm

or a computer program. The definition of independence means that the automation de-

vice works without human intervention, except at the start and for supervision. This

excludes patents that are minor parts of an automation innovation and highly abstract
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patents with no obvious application. Therefore, their classification is fairly strict, as de-

vices that require a certain amount of labor involvement but are efficiency-enhancing are

also desirable for reducing labor costs.

Data on the classification of process and non-process innovation is from Bena and Sim-

intzi (2019). A process innovation describes a new way to produce an existing good, with

the aim to lower production costs, e.g., labor costs. A non-process innovation typically

describes a new good that did not exist before. The data includes the patent number, the

filing and granting date, number of claims per patent, and number of process claims per

patent.

[6] Job creation.

The job creation data is from the Quarterly Workforce Indicators (QWI), derived from the

Longitudinal Employment-Household Dynamics (LEHD) program at the Census Bureau.

The QWI is reported based on detailed firm characteristics and worker demographics and

is available at the national, state, MSA, county, or workforce investment areas (WIA) level.

3.3 Summary Statistics

Table 2 presents the summary statistics. The mean and median of a firm’s capital-labor ratio are

3.687 and 3.549, with a standard deviation of 1.634, indicating significant variations in choices

of production functions across firms. The average rank of a firm’s labor exposure to climate

change is 4.557.

Figure 1 (A) presents the time-series average of all firms’ capital-labor ratios from 1980 to

2019. Consistent with the literature, the figure shows that the whole economy is becoming

more capital-intensive over time. Figure 1 (B) presents the time-series average capital-labor

ratios for high-exposure (LECC larger than five) and low-exposure (LECC equal to or smaller

than five) firms separately. It shows that high-exposure firms, on average, have higher capital-

labor ratios than low-exposure firms. The capital-labor ratio gap did not change much over

time before 2000. However, after 2000, the gap becomes wider as time goes by, coinciding with

the trends of rising temperatures and people’s concerns about climate risks over time.

Figure 2 presents the relation between a firm’s labor exposure to climate change and its
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capital-labor ratio at the cross-sectional level. It shows a monotonic increasing relation between

the LECC and the capital-labor ratio. From group 1 (lowest exposure) to group 10 (highest

exposure), the capital-labor ratio increases by 67.9% from 2.8 to 4.7.

4 Labor Exposure to Climate Change and Production Function

4.1 Firm Capital-labor Ratio

I first examine the association between a firm’s exposure to climate change through the labor

channel and its choice of product functions. My conjecture is that high-exposure firms use

more capital-intensive production functions - higher capital-labor ratios. The empirical model

is as follows:

Yit = µst + πjt + β ∗ LECCjt + δX it + εit (2)

where i denotes firm, j denotes industry, s denotes a firm’s headquarter state, t denotes year. Yit

is the dependent variable - the logarithm of a firm’s property, plant, and equipment (PPENT)

divided by its number of employees (EMP). The key independent variable is the rank variable

of a firm’s labor exposure to climate change LECC, ranging from 1 to 10, with 10 indicating the

highest exposure. Controls include a firm’s labor skill, the logarithm of total assets, leverage,

and a dummy indicating whether a firm pays dividends. µst is the firm headquarter state-

by-year fixed effects, which control for time-varying state-specific trends. πjt is the two-digit

NAICS industry-by-year fixed effects, which absorb industry shocks. In more complete mod-

els, I use three-digit NAICS industry-by-year fixed effects to replace two-digit NAICS industry-

by-year fixed effects.

Table 3 reports the results. The coefficient estimate of LECC is positive and statistically

significant in column (1), suggesting that firms that are more exposed to climate change have

higher capital-labor ratios. The coefficient estimate remains significant after adding firm head-

quarter state-by-year fixed effects to ensure that state-specific time-varying omitted variables

cannot explain the finding. Results also hold after adding two-digit NAICS industry-by-year

or three-digit NAICS industry-by-year fixed effects to control for time-varying industry trends.

The effect is also economically important. In column (6), a one-unit increase in LECC is associ-

ated with an 18.3% increase in the capital-labor ratio.
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It is worth emphasizing that even though the climate exposure index is time-variant, it is

highly sticky over time. The time-series variations purely come from changes in each indus-

try’s needs for different occupations. For example, the four-digit NAICS industry fixed effects

absorb 98% variations in the index. Nevertheless, I further add firm fixed effects in column (8).

The results remain significant, though the economic magnitude is much smaller. This partly

alleviates the concern that unobserved time-invariant firm-level or industry-level factors may

explain the findings in columns (1) - (7). Overall, the results are consistent with my conjecture

that high-exposure firms adopt more capital-intensive production functions.

In Internet Appendix C, I conduct a battery of robustness checks of the baseline results.

First, I add more controls, including market-to-book ratio, cash flow, cash flow volatility, R&D,

and annual change in the logarithm of sales. I also try controlling for firms’ overall climate

exposure using the measures developed by Sautner et al. (2022) (Table C.1). Second, I construct

two alternative measures of the labor exposure to climate change index by: (1) adjusting for

each occupation’s wage; (2) adjusting for firms’ business segments across industries (Table

C.2). Third, I construct four alternative measures of firms’ capital-labor ratios by: (1) using a

firm’s gross property, plant, and equipment (PPEGT); (2) using a firm’s adjusted gross property,

plant, and equipment (PPEGT) following Hall (1990); (3) using a firm’s labor expense (XLR);

(4) using a firm’s imputed labor expense (XLR) following Donangelo et al. (2019) (Table C.3).

All results are consistent.

4.2 Decomposition of Firm Capital-labor Ratio

In Panel B of Table 3, I decompose the capital-labor ratio into the capital and labor components.

In columns (1) and (2), the dependent variable is the logarithm of a firm’s property, plant, and

equipment - Log(PPENT). The coefficient estimate of LECC is positive and statistically signif-

icant. The coefficient estimate remains positive and significant when using a firm’s capital

expenditure scaled by its lagged assets as the dependent variable in columns (3) - (4). The re-

sults suggest that high-exposure firms have more capital stock and higher capital investment

rates. The capital stock and investment rate of a firm with a climate exposure ranking of six

are 23% and 7.6% larger than those of a firm with a climate exposure ranking of four, respec-

tively. Next, I use the logarithm of a firm’s number of employees as the dependent variable in
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columns (5) - (6) and the annual change in the logarithm of a firm’s number of employees as the

dependent variable in columns (7) - (8). The coefficient estimates of LECC are negative and sta-

tistically significant in all four columns, suggesting that high-exposure firms have both lower

employment levels and lower employment growth rates. The employment level and growth

rate of a firm with a climate exposure ranking of six are 12% and 0.6% smaller than those of a

firm with a climate exposure ranking of four, respectively.

Furthermore, In Internet Appendix Table C.4, I show that high-exposure firms have higher

tangibility, lower symmetric employment growth, and low growth rate in labor expenses. To

sum up, the evidence indicates that the capital-labor ratio gap between high- and low-exposure

firms is driven by both increased capital investment and reduced employment.

4.3 Cross-sectional Analyses

To better understand what drives the capital-labor ratio gap between high- and low-exposure

firms, I conduct several cross-sectional tests in this section.

4.3.1 Top-management Political Beliefs

Existing literature has shown that individuals’ political orientation strongly affects their beliefs

about climate issues (e.g., McCright, 2011; Bernstein et al., 2022; Zhang, 2022). For example,

Bernstein et al. (2022) show that houses exposed to sea level rise (SLR) are more likely to be

owned by Republicans, suggesting that Republicans believe less in climate change and are less

worried about climate risks. This is consistent with anecdotal evidence that Republicans are

less active in taking action to deal with climate challenges.7 Therefore, I use managers’ political

orientations as proxies for their beliefs about climate change.

Following the literature, I create a measure of management teams’ political leaning using

the data on firms’ top executives from EexcuComp and the data on individuals’ political con-

tributions from the FEC (Hutton et al., 2014). Specifically, I first calculate an executive’s net

cumulative contributions to the Democratic and the Republican parties separately from 1992 to

7For example, a report by the Pew Research Center shows that Democrats are more than three times as likely as
Republicans to say dealing with climate change should be a top priority (78% vs. 21%). See "More Americans see
climate change as a priority, but Democrats are much more concerned than Republicans".
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2017.8 Then, I calculate the fraction of each executive’s contributions to the Republican party.

Last, I aggregate the measure at the firm level using the following equation:

Repit =
Nit

∑
e=1

ωeit × Repe (3)

where e denotes executive, i denotes firm, and t denotes year. Repe is the fraction of an execu-

tive’s political contributions to the Republican party, Nit is the number of top executives a firm

has, ωeit is the time-varying weights based on the share of each executive’s total annual com-

pensation in the total annual compensation paid to all of a firm’s executives. These weights

consider that different executives have different influences on corporate decisions, which are

often highly correlated with the compensation they receive. Based on the measure, I further

create a dummy, Republican Management, which equals one if more than 70% of the manage-

ment team’s contributions flow to the Republican party. Therefore, this dummy captures firms

with management teams that strongly lean towards the Republican party.

The results are reported in columns (1) - (2) of Panel B, Table 4. It shows that firms managed

by Republican management teams do not adjust their capital-labor ratios in response to climate

change as much as other firms do. The findings support the notion that Republicans act slower

than Democrats in addressing climate threats.9

4.3.2 Workplace Automation

A prerequisite for the adjustment of production functions is that outdoor workers can be substi-

tuted by automated capital. Otherwise, firms will have to continue relying on outdoor workers,

despite high risks and costs. This predicts that the baseline results should be more pronounced

in industries where jobs are easy to automate. To test this substitution effect, I construct a

measure of workplace automation in the same way as the LECC.
8The ExecuComp data starts from 1992 and was available until 2017 when I constructed this measure. Using

all available contributions made by a manager to measure her political leaning means that the measure for the
manager does not vary during the sample period. This is consistent with the idea that party identification is
developed and established in adolescence or early adulthood and remains stable during the entire adult life (Green
et al., 2004). Nevertheless, the results are robust if I use prior donations of managers up to the current fiscal year.

9In Appendix C.5, I use the county-level survey data on beliefs about climate change from the Yale Program
on Climate Change to gauge managers’ views on climate threats. Results show that the labor-channel exposure
to climate change has larger effects on capital-labor ratios for firms located in counties with stronger beliefs in
climate change.
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Automation Indexjt =

Kjt

∑
k=1

(
Ejkt

Ejt
∗ Ak

)
(4)

where j denotes industry, k denotes occupation, Kjt is the total number of occupations in in-

dustry j, t denotes year, Ejkt is the number of employees working in occupation k in industry j,

Ejt is the total number of employees in industry j, and Ak is the the degree of automation for

each occupation from the O*NET program. Then, I create a dummy that equals one if the rank

variable of this index (1 to 10) is above five and zero otherwise.

Results are presented in columns (3) - (4) of Panel B, Table 4. Consistent with my prediction,

firms in industries with high automation prospects adjust more aggressively toward capital-

intensive production processes. The results further support the key argument in this paper -

firms adapt to climate change by increasing automation and reducing reliance on labor.

4.3.3 Labor Union

Last, I examine how employee protection provided by labor unions affects firms’ adaptation.

Prior work has documented that labor unions increase employees’ bargaining power and firms’

firing costs, leading to lower unemployment risk (Lewis, 1986; Matsa, 2010). Therefore, labor

unions add barriers to firms’ adjustment toward higher capital-labor ratios, as the adjustment

requires firing workers in the first place. I test this prediction in columns (5) - (6) of Panel B,

Table 4. The results show that the baseline findings are weaker for firms in more unionized

industries, indicating that labor unions slow firms’ adaptation to climate change.

Taken together, cross-sectional analyses imply that managers’ beliefs about climate change

and the possibility of substituting capital for labor are critical in firms’ adjustment of produc-

tion functions. The evidence supports the hypothesis that managers adopt capital-intensive

production functions to address concerns over climate-induced rising labor costs.

5 Climate Risks

I hypothesize that physical and regulatory risks induced by high temperatures raise the labor

costs of firms relying on outdoor workers. The physical risk refers to the negative impact of

high temperatures on outdoor workers’ labor supply and productivity. The regulatory risk
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arises from the possibility that regulators may require employers to pay extra costs to protect

their workers from heat hazards. In this section, I design two empirical tests to identify the two

risks and examine their impact on production functions. The tests also help address endogene-

ity issues in the baseline results in Section 4.1.

5.1 Temperature Shocks

My first empirical strategy utilizes variations in hot temperatures across areas and examines

how firms respond to local temperature shocks. These shocks affect firms in two ways. First,

hot temperatures are real-time physical risks that hurt workers’ labor supply and productiv-

ity (realized physical risks). In consequence, firms’ operations get disrupted, and performances

deteriorate. Second, hot temperatures cause individuals, including managers and regulators,

to revise their beliefs about climate change upward and pay more attention to climate risks

(expected higher physical and regulatory risks) (e.g., Joireman et al., 2010; Li et al., 2011; Sisco et al.,

2017; Choi et al., 2020).

The threats caused by realized physical risks and expected higher physical and regula-

tory risks before long together incentivize managers to adjust to optimal production func-

tions - higher capital-labor ratios. Importantly, the optimal level of capital-labor ratios is time-

dependent - it gradually increases as temperatures become hotter and hotter. That is, each hot

temperature shock pushes the optimal level of capital-labor ratio higher.

A big concern regarding this empirical strategy is that firms with certain observed or un-

observed characteristics may incorporate local climate into their production decisions (e.g.,

choices of production functions, product types, operating locations, etc.). To address this con-

cern, I focus on relative temperature shocks that are exogenous to firms’ operations. The rel-

ative temperature shocks are cases where a county’s daily temperatures in the summertime

(May - September) are above the 90th percentile10 of the county’s summer temperature records

10There are several reasons why I only count relative abnormal temperature shocks in the summertime. First, this
is a widely used method to identify the physical climate risk in the literature (e.g., Addoum et al., 2020; Alekseev
et al., 2021; Islam and Singh, 2021; Pankratz et al., 2021; Pankratz and Schiller, 2021). Second, using an absolute
threshold (e.g., 90°F) can be problematic, as firms’ choices of locations and productions are not random. That is,
firms located in hot areas may already have many precautionary measures. Third, abnormal temperatures that are
relatively mild (e.g., 80°F) in the summertime can be perceived as hot in areas with relatively cool temperatures
in history. As long as firms’ workers and equipment can not deal with relatively abnormal temperatures, they
need to adjust their production process, no matter how high the absolute level is. Fourth, relatively abnormal
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from 1979 - 201911.

This identification strategy assumes that local relative temperature shocks are not predictable

and can not be affected by a specific firm’s decisions. This assumption is likely to be true, as

the distribution of temperature shocks across years is random (Auffhammer et al., 2013; Dell

et al., 2014). As these shocks are unexpected, firms cannot foresee or take any precautious mea-

sures against them ex ante. Figure 3 presents the distribution of temperature shocks across the

contiguous U.S. in 2002, 2007, 2014, and 2019. Consistent with the argument that the relative

temperature shocks are exogenous, they are not concentrated in one specific county. Instead,

they appear in different counties across the years.

5.1.1 The Physical Risk Mechanism - Effects of Temperature Shocks on Labor Productivity

Before examining production functions, I first test the impact of temperature shocks on firms’

labor productivity to pin down the physical risk mechanism. To do the test, I use the establishment-

level data on employment and sales from YE Time Series and aggregate the data at the firm-

by-county-by-NAICS 4-by-year level. The empirical specification is as follows:

Yijct = τit + µc + πjt + β1 ∗ LECCjt ∗ Temperature Shocksct + β2 ∗ LECCjt + β3 ∗ Temperature Shocksct

+ εijct
(5)

where i denotes firm, j denotes four-digit NAICS industry code of an establishment, c denotes

county of an establishment, and t denotes year. Yijct is the dependent variable - the natural

logarithm of a firm’s sales or sales per employee in a four-digit NAICS industry j in a county

c. The key independent variable is the interaction term between LECC and Temperature Shocks.

LECC is a rank variable from 1 to 10, with 10 indicating the highest exposure to climate change.

high temperatures outside the summertime, especially in winter, are good for outdoor workers. For example, Mc-
Donald’s earnings announcement in 2015 stated that - "fourth quarter comparable sales increased 5.7%, benefiting
from. . . unseasonably mild weather". Untabulated results show that firms’ production functions do not respond
to absolute temperature shocks (e.g., temperatures above 30° degrees celcius.)

11Some may worry about the look-ahead bias in this measure, as it incorporates future temperatures when cal-
culating the threshold for identifying relative temperature shocks. This bias actually raises the bar for identifying
relative shocks as temperatures become warmer and warmer. I use this measure in my main analyses to be con-
sistent with the data on climate projections provided by the CDC. In Internet Appendix C, I use a fixed reference
period of the past ten years to calculate the 90th threshold for identifying temperature shocks. Results on produc-
tion functions hold. Untabulated results using a fixed reference of the past twenty years are also consistent.
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Temperature Shocks is a dummy indicating that a county has at least 20 days12 in the summertime

with temperatures above the 90th percentile of local summer temperature records. τit is firm-

by-year fixed effects, µc is county fixed effects, and πjt is two-digit NAICS industry-by-year

fixed effects.

The results are reported in Table 5. Columns (1) and (3) examine the impact of tempera-

ture shocks on a firm’s labor productivity across industries and counties. The coefficient es-

timates of the interaction term LECC*Temperature Shocks are negative for both sales and sales

per employee. However, only the coefficient for sales per employee is statistically significant.

In columns (2) and (4), I use firm-by-county-by-year fixed effects to replace firm-by-year and

county fixed effects, which allows for comparing a firm’s labor productivity across industries

within the same county. The coefficient estimates are negative and statistically significant for

both sales and sales per employee. Results hold in columns (3) and (6) after using industry-by-

year fixed effects to replace industry fixed effects. The effects are also economically significant.

In columns (3) and (6), after severe temperature shocks, the sales and sales per employee of a

firm with a climate exposure ranking of six are 3.6% and 2.2% lower than those of a firm with

a climate exposure ranking of four, respectively.

5.1.2 Effects of Temperature Shocks on Firm Capital-labor Ratio

After presenting evidence supporting the physical risk mechanism, I turn to examine the im-

pact of temperature shocks on firms’ production functions. I measure a firm’s exposure to

relative temperature shocks across counties using data on establishment-level employment as

follows:
Cit

∑
c=1

(
EMPict

EMPit
∗ No. days with relative temperature shocksct

)
(6)

where i denotes firm, c denotes county of establishments, Cit denotes the total number of coun-

ties where a firm’s establishments locate, and t denotes year. EMPict is a firm’s total employ-

ment in county c, EMPit is a firm’s total employment, No. days with temperature shocks is the

number of days with relative temperature shocks in county c in the summertime of year t.

12The mean, median, 75th percentile and 95th percentile of the distribution are 21, 19, 29 and 50 days, respectively.

23



The empirical specification for regression analyses is as follows:

Yit = τi + µst + πjt + β1 ∗ LECCjt ∗ Temperature Shocksit + β2 ∗ LECCjt−1 ∗ Temperature Shocksit−1

+ β3 ∗ LECCjt−2 ∗ Temperature Shocksit−2 + β4 ∗ LECCjt + β5 ∗ Temperature Shocksct

+ β6 ∗ LECCjt−1 + β7 ∗ Temperature Shocksct−1 + β8 ∗ LECCjt−2 + β9 ∗ Temperature Shocksct−2

+ δX it−2 + εit
(7)

where i denotes firm, j denotes industry, s denotes a firm’s headquarter state, and t denotes

year. Yit is the dependent variable - a firm’s capital-labor ratio. The key independent variable

is the interaction term between LECC and Temperature Shocks. Two lags of the interaction term

are allowed to account for delayed responses. LECC is a rank variable from 1 to 10, with 10

indicating the highest exposure to climate change. Temperature Shocks is a dummy indicating

that a firm experiences at least 20 days in the summertime with relative temperature shocks.

Controls include a firm’s labor skill, the logarithm of total assets, leverage, and a dummy in-

dicating whether a firm pays dividends. Firm-level controls are lagged by two years. τi is

firm fixed effects, µst is the firm headquarter state-by-year fixed effects, and πjt is the two-digit

NAICS industry-by-year fixed effects.

The results are reported in columns (1) - (3) of Table 6. The coefficient estimates of the three

interaction terms are all positive and statistically significant, suggesting that high-exposure

firms adjust toward more capital-intensive production functions after temperature shocks. The

economic effects are also significant. In column (3), a one-unit increase in LECC is associated

with a 0.5% increase in capital-labor ratios in the year with severe temperature shocks, a 0.5%

increase in the following year, and another 0.5% increase in two years. Put differently, a firm

with a climate exposure ranking of six increases its capital-labor ratio by 3% relative to a firm

with a climate exposure ranking of four in two years after experiencing the shocks.

Results hold in the following robustness checks in Internet Appendix D. First, to best use

the Compustat data, I measure temperature shocks in firms’ headquarter counties or states.

Second, I redo the tests by controlling for abnormal cold temperatures in winter, abnormal

precipitation, and other types of disaster events. Third, I use a fixed reference period of the

past ten years to measure temperature shocks. Untabulated results also try using the past
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twenty years. In addition, results decomposing the capital-labor ratio show that the findings

are driven by increased capital and decreased employment.

5.1.3 Projected Long-term Temperature Changes

Results in columns (1) - (3) of Table 6 are consistent with the notion that managers update

beliefs about climate change after seeing abnormal temperature patterns. That is, each temper-

ature shock serves as a piece of evidence that long-term dramatic temperature changes are hap-

pening. However, this belief update process should mainly manifest in places where short-term

temperature shocks agree with long-term temperature projections. Put differently, if model-

based climate projections suggest that long-term temperature changes are mild, managers may

not take short-term temperature shocks as indicators of climate change and therefore do not

make adjustments to existing production functions. More specifically, the effects of a one-time

temperature shock on production functions in columns (1) - (3) should primarily exist in areas

where projected long-term temperature increases are significant.

To test this conjecture, I split firms into two groups - firms operating in counties with pro-

jected temperature increases above the sample median and firms operating in counties with

projected temperature increases below the sample median. Then I examine the effects of tem-

perature shocks on production functions for the two groups, respectively. Results in columns

(4) - (5) of Table 6 show that short-term temperature shocks only positively affect production

functions of firms operating in counties with big projected temperature increases. For firms op-

erating in counties with mild projected temperature increases, short-term temperature shocks

do not affect their production functions, suggesting that managers do not take these shocks as

indicators of climate change.

Taken together, findings in Section 5.1 confirm that rising temperatures indeed drive high-

exposure firms’ adjustment towards capital-intensive product functions. The physical risk

mechanism, i.e., adverse effects of high temperatures on labor productivity, is a critical un-

derlying force driving the decisions. However, it should be noted that tests on production

functions can not separate the physical risk mechanism from the regulatory risk mechanism

because high temperatures trigger both physical and regulatory risks.
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5.2 The Regulatory Risk Mechanism

In this section, I focus on the regulatory risk exclusively and investigate its effects on firms’

production functions. To this end, I examine how firms respond to the HIPS passed in Cali-

fornia in 2005, which also serves as the second identification strategy addressing endogeneity

issues.

5.2.1 Institutional Background

Federal Regulations on Heat Illness Prevention The Occupational Safety and Health Ad-

ministration (OSHA), a regulatory agency of the U.S. Department of Labor, was established in

1971 to "assure safe and healthy working conditions for working men and women by setting

and enforcing standards and by providing training, outreach, education and assistance". Im-

plicit in this mission is that OSHA must ensure that employees are not working under risks of

excessive heat that may cause harm or deaths. However, even though OSHA has been paying

attention to workers’ heat exposure, it has yet to implement a federal heat standard to safe-

guard workers against rising temperatures.13

OSHA does have the General Duty Clause that requires employers to provide their employ-

ees with a workplace free of recognized hazards likely to cause serious physical harm or death,

including heat hazards. However, the General Duty Clause is mostly ex-post remedies after

employees have already become sick or died. The enforcement process can be lengthy, often

involving waiting for a death certificate, an autopsy report and other proofs. What is worse,

the Occupational Safety and Health Review Commission (OSHRC) sets a very high bar for us-

ing the General Duty Clause in cases involving heat exposure.14 Further, a study by OSHA

staff shows that the General Duty Clause fails to incentivize employers to implement common

elements of illness prevention programs (Arbury et al., 2016).

13The National Institute for Occupational Safety and Health (NIOSH) and public interest groups have tried
several attempts encouraging OSHA to issue a heat standard requiring employers to protect their workers.
However, all attempts failed. See, for example, the petition from Public Citizen and other organizations
https://bit.ly/2KGG1WG and the response from OSHA http://bit.ly/2KFB8wZ.

14In the case of A.H. Sturgill Roofing Co. v. Secretary of Labor, an OSHRC judge overturned five heat hazard
citations against the U.S. Postal Service, holding that OSHA could not rely on a National Weather Service guide
to determine heat severity. This ruling significantly hurts OSHA’s ability to cite employers for failing to protect
workers from heat exposure.
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In March 2021, the congressional Democrats introduced a bill, the Asunción Valdivia Heat

Illness and Fatality Prevention Act, mandating OSHA to establish an enforceable standard to

protect indoor and outdoor workers against occupational heat exposure. This bill is named

after Asunción Valdivia, a California farmworker who died from heatstroke in 2004 after pick-

ing grapes for 10 hours straight in 105°F temperatures.15 In addition, as June 2021 became

the hottest June on record in the U.S., the Biden Administration sounded the alarm on heat-

induced workplace problems and announced a whole-of-government approach to address ex-

treme heat, including developing workplace heat standards and increasing enforcement.16

State Regulations on Heat Illness Prevention Before the Congress’s and the Biden Adminis-

tration’s move to fill the void, several states have already implemented permanent workplace

safety standards for heat, among them California, Washington, and Minnesota. Of the three,

California was the first to adopt a Heat Illness Prevention Standard to protect outdoor workers

in 2005. The standard was first used as an emergency tool in August 2005 and then turned into

a permanent bill in July 2006. Washington followed suit issuing an emergency heat illness pre-

vention standard in 2006 and 2007 and making it a permanent rule in 2008. Both California’s

and Washington’s standards apply to outdoor workers only.17

Under the California Code of Regulations18, employers are required to provide their out-

door employees with the following protections against heat exposure:

[1] Provision of water. Workers shall have access to potable drinking water that is fresh,

pure, suitably cool and free of charge.

[2] Access to shade. When the temperature exceeds 80°F, the employer shall maintain enough

areas with shade at all times that are either open to the air or provided with ventilation

or cooling. Timely access to shade should be available upon an employee’s request when

the temperature is below 80°F.

15See "S.1068 - Asuncion Valdivia Heat Illness and Fatality Prevention Act of 2021".
16See "FACT SHEET: Biden Administration Mobilizes to Protect Workers and Communities from Extreme Heat".
17Even passed as early as 1997, Minnesota’s heat standard only applies to indoor places of employment, which

is not the focus of this study. Some other states are also in action, such as Florida, Nevada, Oregon, and Virgina.
18See "§3395. Heat Illness Prevention in Outdoor Places of Employment" for more details of the standard.
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[3] Rest. Employees shall be allowed and encouraged to take a preventative cool-down rest

in the shade when they feel the need to do so to protect themselves from overheating. If

workers show signs of heat illness, they shall not be ordered back to work until any signs

of heat illness have abated.

[4] High-heat procedures. The employer shall implement high-heat procedures when the

temperature equals or exceeds 95°F, including regular communication with employees, a

mandatory buddy system, and intensive monitoring of employee health conditions.

[5] Acclimatization. All employees shall be closely observed by a supervisor or designee

during a heat wave. An employee who has been newly assigned to a high heat area shall

be closely observed by a supervisor or designee for the first 14 days of employment.

[6] Emergency Response Procedures. Employers shall implement effective emergency re-

sponse procedures. For example, workers with symptoms of heat illness shall be moni-

tored and shall not be left alone or sent home without being offered onsite first aid.

[7] Prevention and Training. Employers shall establish, implement, and maintain an effec-

tive heat illness prevention plans. Employers must train their employees to recognize the

symptoms of heat illness and their rights.

Since the establishment of the HIPS, California OSHA has been strictly enforcing the rules.

A recent assessment report suggests that there were in total 45,889 heat-related inspections

and 20,904 violations of the HIPS cited from 2005 to 2019.19 However, the federal OSHA only

conducted 142 inspections resulting in at least one heat citation under the general duty clause

between 2013 and 2017.20 Furthermore, using the universe of injury claims in California, Park

et al. (2021) show that the effect of hot temperatures on injury risk is much lower after the HIPS.

In particular, they find that hot temperatures caused approximately 6,100 injuries per year in

2001 - 2005 versus approximately 4,250 injuries per year in 2006 - 2018.

Violating the HIPS may trigger civil penalties. Depending on the severity of a violation, the

fine ranges from hundreds to millions.21 Moreover, violations can result in criminal penalties
19See Internet Appendix Figure E.1.
20See page 29 in the report "Extreme Heat and Unprotected Workers" by Public Citizen.
21For example, after the death of a pregnant teenage vineyard worker, the Cal/OSHA issued six citations and a

fine of $262,700 against Merced Farm Labor Contractor in 2008. See Internet Appendix E.1 for more details.
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against managers and safety supervisors, including fines and imprisonment.22

The HIPS significantly raises firms’ operating costs. On the one hand, workers’ working

time decreases while their wages are sticky. On the other hand, firms pay large costs to cover

facilities providing water, shade, medical support, and training. For example, one respondent

in the "Final Performance and Evaluation Report" of the California Heat Illness Prevention Cam-

paign in 2012 complained that - “Having to follow the buddy rule when the job really only needs

one employee, but because they are outdoors and working in field, they have to have a buddy. That

costs the company.” Another labor contractor also mentioned that supplying enough water was

a challenge and the operating costs had increased - “I have 500 workers and having to keep water

within reach and filled to at least half way has made it so that I hire three extra people to just focus on

monitoring and moving water up so that it is within reach of workers.”23

5.2.2 Effects of the HIPS on Firm Capital-labor Ratio

As discussed above, California was the first state to pass the HIPS to protect outdoor workers

from heat hazards. This prevention standard first appeared as an emergency rule in August

2005 and became a permanent one in July 2006. Importantly, the bill’s adoption is a result of

cumulative historical temperature threats rather than a one-time spike in temperatures. Figure

4 shows no abnormal changes in average temperatures or the number of absolute or relative hot

days around 2005. If anything, temperatures were relatively mild in the summer of 2005. This

helps exclude the concern that spikes in temperatures before or in 2005 drove both the adoption

of the HIPS and firms’ responses. The adoption is also not likely driven by significant changes

in regulatory environments, as the Democrats have run California since 1992. Therefore, the

adoption is likely exogenous from a given firm’s perspective.

Building on the adoption of the HIPS in California, I design a difference-in-differences strat-

22For example, Bumble Bee Foods agreed to pay $6 million to settle a case regarding the death of a worker in
2012. In addition, Bumble Bee was also required to implement extra safety measures, provide safety training to
managers and workers and conduct safety audits of equipment. Furthermore, the company’s safety manager Saul
Florez and plant director Angel Rodriguez were charged with willfully violating worker safety rules. Eventually,
Saul Florez pleaded guilty and was sentenced to three years of formal probation and 30 days of community labor.
He also received a fine of $19,000 and was required to take work-safety classes. Angel Rodriguez agreed to do 320
hours of community service, pay $11,400 in fines and take work-safety classes. See, for example, "Bumble Bee to
pay $6M in oven death; 2 managers will pay $30K".

23See "California Heat Illness Prevention Campaign - Final Performance and Evaluation Report".
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egy to test firms’ response to climate-induced regulatory changes in the labor market.24 The

pre-treatment period includes the years 2002, 2003, and 2004 and the post-treatment period in-

cludes the years 2005, 2006, and 2007. I choose 2007 as the ending year to avoid any disruptions

caused by the 2008 financial crisis. To construct the sample, I first drop firms headquartered

outside of California or firms whose four-digit NAICS industry classification changed during

the 2002 - 2007 period. Then, I require a firm’s financial data to be available in the base year

2004 and in at least one year in the post-treatment period. After constructing the sample, I split

firms into two groups - high-exposure firms as the treated group (LECC larger than five) and

low-exposure firms as the control group (LECC equal to or smaller than five). The assumption

is that high-exposure firms are more affected by the heat standard. Summary statistics of the

sample are reported in Internet Appendix Table E.1. The empirical specification is as follows:

Yit = τi + µct + πjt + β1 ∗ High LECCj2002 ∗ Preventiont + β2 ∗ LECCj2002

+ β3 ∗ Preventiont + δX it−1 + εit

(8)

where i denotes firm, j denotes industry, c denotes a firm’s headquarter county, t denotes year.

Yit is the dependent variable - the capital-labor ratio. The variable of interest is the inter-

action term between a dummy indicating a firm’s high exposure to climate change in 2002

(High LECCj2002) and a dummy indicating the adoption of the HIPS - Preventiont, which equals

one for the period 2005 - 2007 and zero for the period 2002 - 2004. Controls include a firm’s

labor skill, the logarithm of total assets, leverage, and a dummy indicating whether a firm pays

dividends. All controls are lagged by one year. τi is the firm fixed effects, µct is the firm head-

quarter county-by-year fixed effects, and πjt is the industry-by-year (two-digit or three-digit

NAICS) fixed effects.

The empirical results are presented in Table 7. Column (1) reports the coefficient estimate

for the interaction term with firm and year fixed effects. The coefficient estimate is positive

and statistically significant, suggesting that high-exposure firms adjust to higher capital-labor

24I do not include Washington in the analyses because there are only 50 firms in Washington but 446 firms in Cal-
ifornia based on my sample selection criteria. Only using firms in California avoids heterogeneities in economic
conditions and regulations across states. Nevertheless, in Internet Appendix E.2, I show that the results are robust
to including firms in California, Washington, and several neighboring states.
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ratios after California passes the HIPS. The significance remains in column (3) after adding

lagged controls and county-by-year fixed effects. I further add two-digit NAICS industry-by-

year fixed effects in column (4) and three-digit NAICS industry-by-year fixed effects in column

(5). Results hold. The increase in capital-labor ratios is economically important as well: in

column (4), after the HIPS, high-exposure firms increase capital-labor ratios by 15.1%, relative

to low-exposure firms.

5.2.3 Dynamic Treatment Effects

In this section, I examine the dynamics of differences in capital-labor ratios between treated

and control firms around the adoption of the HIPS. To this end, I replace the Prevention dummy

with time indicator variables - Year 2002, Year 2003, Year 2005, Year 2006, and Year 2007. The year

2004 is taken as the base year and thus omitted. The coefficient estimates of the interaction

terms between High LECCj2002 and these time indicator variables measure the differences in

capital-labor ratios between treated and control firms in the respective individual years.

The results are reported in Table 8. It shows that there is no statistically and economi-

cally significant difference in capital-labor ratios between treated and control firms prior to

the adoption of the HIPS. This is also presented in Figure 5, which plots the coefficient esti-

mates of these interaction terms. The figure shows that the treatment effect (the solid green

line) hovers around zero in the pre-treatment period 2002 - 2004, supporting the parallel trends

assumption. Importantly, once the HIPS is implemented, treated firms adjust toward higher

capital-labor ratios relative to control firms. The solid green line in Figure 5 immediately goes

up at a significant level in 2005. The results hold after adding firm headquarter county-by-year

and industry-by-year fixed effects.25

In Figure 6 (A) and (B), I plot the dynamic treatment effects for capital investment and

employment growth separately. In both figures, the treatment effect was close to zero in the

25A severe heat wave hit California in 2006, with the central valley mostly struck, leading to a concern that this
heat wave could fully or partially drive the results. Two pieces of evidence are against this concern. First, Figure
5 shows that the treatment effects of the HIPS appear immediately in 2005, the adoption year, rather than in
2006 when the heat wave happened. Second, in Internet Appendix E.3, I show that the impacts of the HIPS are
homogeneous across counties with different relative temperature shocks in the period 2002 - 2007. In untabulated
results, I also do not find heterogeneous effects of HIPS when examining counties with different temperature
levels or numbers of absolute temperature shocks. The evidence suggests that the HIPS is the dominant factor
contributing to rising capital-labor ratios in the period 2005 - 2007.
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pre-treatment period but significantly deviate from zero starting from 2005. Empirical tests for

the capital and the employment component are reported in Internet Appendix E.4.

In Internet Appendix E.5, I further show that the baseline effects of the labor-channel ex-

posure to climate risk on capital-labor ratios are more pronounced for firms headquartered in

Democratic states, especially those in warm regions. This is consistent with the notion that

Democrats believe more in climate change, care more about workers’ welfare and thus are

more likely to take action to pass a heat illness prevention bill. In addition, climate threats are

bigger in warm regions. Therefore, firms in Democratic states and warm regions face bigger

regulatory risks.

To summarize, results in Section 5.2 provide causal evidence that the regulatory risk is an-

other force driving firms’ adjustment towards higher capital-labor ratios to adapt to climate

change.

6 Innovation and Automation

I further investigate firms’ innovation strategies in the adaptation process, considering the

importance of technological advancement in entering into a capital-intensive economy (e.g.,

Karabarbounis and Neiman, 2014; Acemoglu and Restrepo, 2019, 2020; Bena et al., 2021). For

example, Karabarbounis and Neiman (2014) show that the declining labor share since the early

1980s is mostly driven by the decrease in the relative price of investment goods, often attributed

to advances in information technology and the computer age. Acemoglu and Restrepo (2020)

document that one more robot per thousand workers reduces the employment-to-population

ratio by 0.2 percentage points and wages by 0.42%. To deal with rising labor costs induced by

climate threats, firms may spend more effort in R&D to innovate machines and equipment or

new production methods that can reduce reliance on labor. Results testing this conjecture are

reported in Table 9.

Columns (1) - (6) present firms’ innovation activities after temperature shocks. Column

(1) shows that firms significantly increase R&D spending after experiencing the shocks. In

particular, the R&D expenses of a firm with a climate exposure ranking of six increase by 0.8%

in the long term relative to a firm with a climate exposure ranking of four. Columns (2) -
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(6) report firms’ patenting activities. It suggests that high-exposure firms file more patents.

Importantly, results in columns (5) show that firms are more likely to develop an automation

patent after temperature shocks. The automation patent is mainly used for developing devices

that carry out a process independently. Consequently, the automation patent is labor-saving,

enabling jobs to be done with less human input. In column (5), the probability of filing an

automation patent by a firm with a climate exposure ranking of six increases by 0.78% in the

second year of seeing the shocks, relative to a firm with a climate exposure ranking of four.

Columns (6) examine firms’ development of process innovation that aims at lowering firms’

production costs including labor costs. The effects are not statistically significant.

Results in column (7) show that firms impacted by the HIPS in California significantly

increase R&D expenses. Relative to low-exposure firms, high-exposure firms increase R&D

spending by 15.7%. Meanwhile, high-exposure firms file more patents. These patents are also

more influential and valuable, i.e., more citations and higher market value. Furthermore, high-

exposure firms are more likely to develop automation patents and process innovation. Relative

to low-exposure firms, the probability of having an automation patent among high-exposure

firms increases by 3.7%, and the probability of having one process claim increases by 5.2%.

Taken together, results in Table 9 show that high-exposure firms spend more effort on inno-

vation after temperature and regulatory shocks. More importantly, these firms develop more

patents that can facilitate automation and reduce reliance on labor, lending further support

to the hypothesis that high-exposure firms respond to climate challenges by using capital to

replace labor and by increasing automation.

7 Industry Dynamics

In this section, I further investigate the implications of the labor-channel exposure to climate

change for industry dynamics. Firm-level analyses so far support the hypothesis that rising

temperatures increase firms’ labor costs, and in response, firms cut reliance on human cap-

ital. This firm-level effect may add up to an economically important magnitude that leads

to industry-wise employment contraction. Specifically, the labor-channel exposure may neg-

atively affect industry-wise job creation and workers’ earnings, resulting in job and income
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losses. I test this prediction using the QWI data at the county-by-four-digit NAICS industry

level and report the results in Table 10.

Columns (1) - (4) test the impact of temperature shocks. Columns (1) - (2) show that high-

exposure industries create fewer new jobs in the year with severe temperature shocks. Specifi-

cally, after the shocks, the job create rate of an industry with a climate exposure ranking of six is

0.12% lower than that of an industry with a climate exposure ranking of four, though the nega-

tive effect disappears in following years. Columns (3) - (4) show that workers in high-exposure

industries have slower earnings growth in the year with shocks. However, their earnings grow

much faster in the second year. The two coefficient estimates are the same, indicating almost

a full recovery. Columns (5) - (8) show that the HIPS in California hurts both job creation and

workers’ earnings. Relative to low-exposure industries, job creation and earnings growth rates

are 2.2% and 1.6% lower in high-exposure industries, respectively. Overall, the industry-wide

patterns suggest that the labor-channel exposure significantly impedes industry expansion and

hurts outdoor workers’ income.

8 Conclusion

Climate change has constantly been pushing up global temperatures, creating enormous chal-

lenges to human activities. Outdoor workers are among those that are most affected by high

temperatures. Not only their health but also their lives are under significant threat. Consider-

ing that human capital is key to firms’ production, not paying enough attention to the threats

causes material risks to firms. This paper looks into these risks and calls for more attention to

the health issues of outdoor workers in the transition to a warmer era.

Specifically, in this paper, I show that the risks mainly come from two sources: (1) phys-

ical risk - lower labor productivity in high temperatures; (2) regulatory risk - the possibility

of governments introducing regulations to protect workers against heat hazards. Both risks

contribute to rising labor costs for firms with many outdoor workers.

How do firms cope with these risks and adapt to climate change? To answer this question, I

utilize information on each occupation’s exposure to weather and construct a measure reflect-

ing firms’ exposure to climate change through the labor channel. I find that high-exposure firms
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have higher capital-labor ratios, especially when their managers believe in climate change or

when jobs are easy to automate. After experiencing shocks to physical (abnormally high tem-

peratures) or regulatory (the adoption of the HIPS in California) risks, high-exposure firms

switch to more capital-intensive production functions. The evidence suggests that, in response

to rising labor costs induced by climate change, firms use capital to replace labor. I also find

that high-exposure firms respond to the shocks by innovating more, especially in technologies

facilitating automation and reducing labor costs. The findings indicate that climate change

promotes automation and speeds up our entering into a capital-intensive economy.

An important implication of these findings is that climate change leads to significant job

and income losses for those working in outdoor environments. This is further confirmed in the

industry-wide evidence that labor exposure to climate change negatively affects job creation

and workers’ earnings, echoing various reports predicting increased economic losses as global

warming intensifies. The evidence reveals unexpected negative effects of firms’ adaptation to

climate change on workers and local communities. In addition, even though regulators are

trying to protect workers from heat hazards, the fact that increasing protection leads to less

hiring implies that regulators need to balance between protecting workers and incentivizing

firms to create jobs.
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Variable Definitions

Variables Description

Dependent Variables

Log(PPENT/EMP) The logarithm of a firm’s property, plant, and equipment (PPENT) divided by its number of employees (EMP).

Log(PPENT) The logarithm of a firm’s property, plant, and equipment (PPENT).

CAPEX/Lag(AT) A firm’s capital expenditure (CAPEX) divided by its lagged assets (AT).

Log(EMP) The logarithm of a firm’s number of employees (EMP).

Change in Log(EMP) Annual change in the logarithm of a firm’s number of employees (EMP).

Log(Sales) The logarithm of a firms’ sales (in thousands), from YE Time Series.

Log(Sales/EMP) The logarithm of a firms’ sales (in thousands) per employee, from YE Time Series.

R&D/Lag(AT) A firm’s R&D expenses (XRD) divided by its lagged assets (AT).

Log(1+No. Patents) The logarithm of one plus the number of patents a firm files in a year.

Log(1+Citations) The logarithm of one plus the number of forward citations of a firm’s filed patents.

Log(1+Value) The logarithm of one plus the estimated value of a firm’s filed patents.

Automation Patent A dummy indicating that a firm has at least one automation patent filed.

Process Innovation A dummy indicating that a firm has at least one process claim in filed patents.

Change in Log(No. Jobs) Annual change in the logarithm of the number of jobs in each four-digit NAICS industry in a county.

Change in Log(Earnings) Annual change in the logarithm of average earnings in each four-digit NAICS industry in a county.

Key Independent Variables

LECC The rank of the labor exposure to climate change index from 1 to 10, with 10 indicating the highest exposure.
The raw index is the weighted average of all occupations’ exposure to weather within a four-digit NAICS
industry. The weight is the percentage of people working in a given occupation in a four-digit NAICS industry.
See Equation (1).

High LECC A dummy indicating that LECC is larger than five.

Temperature Shocks A dummy indicating that a firm has at least 20 days with relative temperature shocks. The firm-level relative
temperature shocks are the weighted average of each county’s relative temperature shocks. The weight is
the fraction of employees a firm has in a county.

Prevention A dummy indicating the adoption of the Heat Illness Prevention Standard in California, which equals one for
the period 2005 - 2007 and zero for the period 2002 -2004.

Republican Management A dummy indicating that more than 70% of the management team’s contributions flow to the Republican party.
See Equation (3).

Workplace Automation A dummy indicating the rank of a four-digit NAICS industry’s workplace automation is above five.
See Equation (4).

Labor Union A dummy indicating that an industry’s union membership is above the 75th percentile of the distribution.
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Variables Description

Control Variables

Labor Skill The rank of labor skill from 1 to 5. The raw measure of labor skill is constructed following Ghaly et al. (2017).

Size The logarithm of a firm’s total assets (AT).

Leverage The book value of long-term debt (DLTT) plus debt in current liabilities (DLC) divided by total assets (AT).

Dividend Payer A dummy indicating that a firm pays dividends (DVC & DVP).
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Figures

Figure 1. Labor Exposure to Climate Change and Firm Capital-labor Ratio: Time-series Patterns

Figure (A) presents the time-series average capital-labor ratio for all firms for the period 1980 - 2019.
Figure (B) presents the time-series average capital-labor ratios for high- and low-exposure firms for the
period 1980 - 2019, respectively. The high-exposure firms are those with LECC above five, and the low-
exposure firms are those with LECC equal to or smaller than five. I assume that a firm’s exposure to
climate change from 1980 to 2001 is the same as in 2002.
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Figure 2. Labor Exposure to Climate Change and Firm Capital-labor Ratio: Cross-sectional Patterns

This figure presents the relation between a firm’s labor exposure to climate change and its capital-labor
ratio at the cross-sectional level. Group 10 contains firms with the highest exposure, and group 1 con-
tains firms with the lowest exposure. The sample period is from 2002 to 2019.
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Figure 3. Distribution of Temperature Shocks across Counties

This figure presents the distribution of relative temperature shocks across counties in the contiguous
U.S. in 2002, 2007, 2014, and 2019. The relative temperature shocks are cases where a county’s daily
temperatures in the summertime (May - September) are above the 90th percentile of the county’s summer
temperature records.
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Figure 4. Temperature Patterns Around the Adoption of the HIPS in California

This figure presents temperature patterns in the summertime in California around the adoption of the
HIPS. Figure (A) presents the average temperatures in Fahrenheit. Figure (B) presents the number of
absolute hot days, i.e., days with temperatures above 90°F. Figure (C) presents the number of relative
hot days, i.e., days with temperatures above the 90th percentile of the county’s temperature records.
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Figure 5. Dynamic Treatment Effects of the HIPS on Firm Capital-labor Ratio

This figure plots the coefficient estimates in Table 8. It shows the dynamic treatment effects of the HIPS
on firms’ capital-labor ratios. The base year is 2004, and the prevention took effect in 2005. The green
solid line represents the coefficient estimates. The red and the blue dashed line represents the upper and
lower bound of the 95% confidence intervals of the coefficient estimates, respectively.
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Figure 6. Dynamic Treatment Effects of the HIPS on Firm Capital Investment and Employment

This figure plots the dynamic treatment effects of the HIPS on firms’ capital investment and employ-
ment, respectively. The estimation method is the same as in Table 8. In both figures (A) and (B), the base
year is 2004, and the prevention took effect in 2005. The green solid line represents the coefficient esti-
mates. The red and the blue dashed line represents the upper and lower bound of the 95% confidence
intervals of the coefficient estimates, respectively.
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Tables

Table 1. Examples of Occupations and Industries with Heterogeneous Exposures to Weather and Climate
Change

Panel A presents examples of occupations with high, medium or low exposure to weather. Ex-
posed to Weather is the outdoor activity score for each occupation from the O*NET program. Panel B
presents examples of industries with high, medium or low exposure to climate change through the
labor channel based on LECC in 2015. LECC is the rank of the raw climate exposure index from 1 to 10,
with 10 indicating the highest exposure.

Panel A. Examples of Occupations with Heterogeneous Exposure to Weather

Occupation Code Occupation Title Exposed to Weather

High Exposure

33-3041 Parking Enforcement Workers 100
53-3031 Driver/Sales Workers 100
47-4051 Highway Maintenance Workers 99
43-5052 Postal Service Mail Carriers 98
49-9052 Telecommunications Line Installers and Repairers 96
11-9013 Farmers, Ranchers, and Other Agricultural Managers 96
53-7121 Tank Car, Truck, and Ship Loaders 95
51-8092 Gas Plant Operators 92
53-5031 Ship Engineers 87
49-2022 Telecommunications Equipment Installers and Repair 84

Medium Exposure

49-3052 Motorcycle Mechanics 63
17-3031 Surveying and Mapping Technicians 59
41-9022 Real Estate Sales Agents 58
47-2211 Sheet Metal Workers 54
49-9043 Maintenance Workers, Machinery 53
49-3023 Automotive Service Technicians and Mechanics 49
17-2051 Civil Engineers 45
27-3023 News Analysts, Reporters, and Journalists 42
35-9021 Dishwashers 40
41-2031 Retail Salespersons 40

Low Exposure

17-2112 Industrial Engineers 19
27-3041 Editors 16
13-1071 Human Resource Specialists 12
17-2061 Computer Hardware Engineers 9
23-1011 Lawyers 9
15-1251 Computer Programmers 5
13-2041 Credit Analysts 4
51-3011 Bakers 4
29-1051 Pharmacists 1
41-9041 Telemarketers 0
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Panel B. Examples of Industries with Heterogeneous Exposure to Climate Change

Four-digit NAICS Code Four-digit NAICS Title Index LECC

High Exposure

1133 Logging 75.45 10
2361 Residential Building Construction 65.37 10
4911 Postal Service 61.87 10
3241 Petroleum and Coal Products Manufacturing 51.94 9
2111 Oil and Gas Extraction 48.03 9
3251 Basic Chemical Manufacturing 47.88 8
4413 Automotive Parts, Accessories, and Tire Stores 45 8
5612 Facilities Support Services 41.45 8
3111 Animal Food Manufacturing 37.78 7
3366 Ship and Boat Building 35.92 7

Medium Exposure

4511 Sporting Goods, Hobby, and Musical Instrument Stores 32.53 6
3115 Dairy Product Manufacturing 31.91 6
3122 Tobacco Manufacturing 30.38 6
5613 Employment Services 29.45 5
5151 Radio and Television Broadcasting 28.97 5
3323 Architectural and Structural Metals Manufacturing 28.91 5
3365 Railroad Rolling Stock Manufacturing 27.52 5
3254 Pharmaceutical and Medicine Manufacturing 27.03 5
6243 Vocational Rehabilitation Services 26.33 5
3113 Sugar and Confectionery Product Manufacturing 26.15 5

Low Exposure

3325 Hardware Manufacturing 19.63 3
3335 Metalworking Machinery Manufacturing 18.40 2
3361 Motor Vehicle Manufacturing 16.36 2
5182 Data Processing, Hosting, and Related Services 13.61 1
3162 Footwear Manufacturing 13.38 1
5611 Office Administrative Services 13.14 1
3152 Cut and Sew Apparel Manufacturing 10.90 1
5412 Accounting, Tax Preparation, Bookkeeping, and Payroll Services 8.93 1
6215 Medical and Diagnostic Laboratories 8.47 1
5411 Legal Services 6.70 1
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Table 2. Summary Statistics

This table presents summary statistics of key variables from the main sample. The sample period is
from 2002 to 2019.

N Mean SD P5 Median P95

Dependent Variables
Log(PPENT/EMP) 63,270 3.687 1.634 1.346 3.549 6.641
Log(PPENT) 63,270 3.744 2.823 -0.934 3.851 8.228
CAPEX/Lag(AT) 58,710 0.053 0.071 0.003 0.03 0.185
Log(Emp) 63,423 0.052 2.18 -3.352 0.02 3.706
Change in Log(EMP) 59,220 0.034 0.234 -0.318 0.023 0.421
R&D/Lag(AT) 59,220 0.075 0.149 0 0.005 0.378
Log(1+No. Patents) 47,106 0.676 1.340 0 0 3.761
Log(1+Citations) 47,106 0.321 0.553 0 0 1.561
Log(1+Value) 47,106 1.067 2.130 0 0 6.166
Automation 35,783 0.200 0.400 0 0 1
Process Innovation 47,106 0.256 0.436 0 0 1

Independent Variables
LECC 63,423 4.557 2.492 1 4 10
Temperature Shocks 47,106 0.453 0.498 0 0 1
Labor Skill 63,423 3.654 1.367 1 4 5
Size 63,423 5.762 2.232 2.06 5.782 9.51
Leverage 63,166 0.263 0.307 0 0.189 0.804
Dividend Payer 63,423 0.346 0.476 0 0 1
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Table 3. Labor Exposure to Climate Change and Production Function

This table presents the relation between a firm’s labor exposure to climate change and its choices of pro-
duction functions. Panel A presents results on firms’ capital-labor ratios. The dependent variable is the logarithm
of a firm’s property, plant, and equipment (PPENT) divided by its number of employees (EMP). Panel B presents
results on firms’ capital and employment, respectively. The dependent variable is the logarithm of a firm’s
property, plant, and equipment (PPENT) in columns (1) - (2), capital expenditure (CAPEX) over lagged assets in
columns (3) - (4), the logarithm of the number of employees (EMP) in columns (5) - (6), and annual change in
the logarithm of the number of employees (EMP) in columns (7) - (8). The key independent variable is a firm’s
labor exposure to climate change (LECC). Controls include labor skill, the logarithm of total assets, leverage,
and a dummy indicating that a firm pays dividends. The sample period is from 2002 to 2019. The industry in
industry-by-year fixed effects in Panel B is at the two-digit NAICS level. Numbers in parentheses are standard
errors. Standard errors are clustered at the four-digit NAICS level. ***, **, and * indicate p-values of 1%, 5%, and
10%, respectively.

Panel A. Firm Capital-labor Ratio

(1) (2) (3) (4) (5) (6) (7) (8)

Log(PPENT/EMP)

LECC 0.304*** 0.302*** 0.270*** 0.206*** 0.173*** 0.168*** 0.098** 0.016**
(0.066) (0.066) (0.046) (0.037) (0.029) (0.029) (0.040) (0.008)

Labor Skill 0.068 0.070 -0.023 0.016
(0.072) (0.071) (0.068) (0.013)

Size 0.259*** 0.260*** 0.241*** 0.309***
(0.011) (0.011) (0.010) (0.015)

Leverage 0.259*** 0.141*** 0.051*
(0.059) (0.048) (0.030)

Dividend Payer -0.015 -0.058** -0.014
(0.032) (0.025) (0.017)

Observations 63,270 63,270 63,233 63,217 63,217 62,963 62,879 61,935
Year FE No Yes No No No No No No
State*Year FE No No Yes Yes Yes Yes Yes Yes
Naics 2 Industry*Year FE No No No Yes Yes Yes No Yes
Naics 3 Industry*Year FE No No No No No No Yes No
Firm FE No No No No No No No Yes
Adjusted R-squared 0.214 0.226 0.262 0.435 0.543 0.546 0.610 0.917
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Panel B. Decomposition of Firm Capital-labor Ratio

(1) (2) (3) (4) (5) (6) (7) (8)

Log(PPENT) CAPEX/Lag(AT) Log(Emp) Change in Log(EMP)

LECC 0.117*** 0.109*** 0.002** 0.002** -0.056*** -0.060*** -0.004*** -0.003**
(0.020) (0.019) (0.001) (0.001) (0.018) (0.018) (0.001) (0.001)

Labor Skill -0.263*** -0.254*** -0.003 -0.003 -0.331*** -0.325*** 0.009*** 0.007***
(0.043) (0.040) (0.003) (0.003) (0.047) (0.047) (0.003) (0.003)

Size 1.081*** 1.074*** -0.000 0.000 0.821*** 0.813*** 0.009*** 0.010***
(0.008) (0.008) (0.000) (0.000) (0.009) (0.009) (0.001) (0.001)

Leverage 0.354*** -0.000 0.098 -0.060***
(0.061) (0.002) (0.070) (0.008)

Dividend Payer 0.116*** -0.005*** 0.131*** -0.025***
(0.039) (0.001) (0.039) (0.004)

Observations 63,217 62,963 58,653 58,418 63,370 63,116 59,161 58,926
State*Year FE Yes Yes Yes Yes Yes Yes Yes Yes
Industry*Year FE Yes Yes Yes Yes Yes Yes Yes Yes
Adjusted R-squared 0.881 0.883 0.294 0.295 0.846 0.847 0.050 0.057
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Table 4. Cross-sectional Analyses

This table presents cross-sectional heterogeneities in firms’ adaptation to climate change. Columns (1) -
(2) examine top-management teams’ political beliefs. Republican Management is a dummy indicating that a firm’s
management team strongly leans toward the Republican party. Columns (3) - (4) examine workplace automation.
Workplace Automation is a dummy indicating that firms’ employees can be easily replaced by automated capital.
Columns (5) - (6) examine labor union. Labor Union is a dummy indicating high industry union membership. The
dependent variable is the logarithm of a firm’s property, plant, and equipment (PPENT) divided by its number
of employees (EMP). The key independent variables are the interaction terms between a firm’s labor exposure
to climate change (LECC) and the partition variables capturing cross-sectional heterogeneities. Controls include
LECC, the partition variable, labor skill, the logarithm of total assets, leverage, and a dummy indicating that a
firm pays dividends. The sample period is from 2002 to 2019. The industry in industry-by-year fixed effects is
at the two-digit NAICS level. Numbers in parentheses are standard errors. Standard errors are clustered at the
four-digit NAICS industry level. ***, **, and * indicate p-values of 1%, 5%, and 10%, respectively.

(1) (2) (3) (4) (5) (6)

Log(PPENT/EMP)

LECC*Republican Management -0.011** -0.012**
(0.006) (0.006)

LECC*Workplace Automation 0.022*** 0.022***
(0.008) (0.008)

LECC*Labor Union -0.014* -0.013*
(0.008) (0.007)

Observations 22,791 22,720 61,967 61,932 51,935 51,875
Controls Yes Yes Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes Yes Yes
Industry*Year FE Yes Yes Yes Yes Yes Yes
State*Year FE No Yes No Yes No Yes
Adjusted R-squared 0.951 0.952 0.917 0.917 0.922 0.923
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Table 5. Temperature Shocks and Labor Productivity

This table presents the effects of temperature shocks on firms’ labor productivity. The dependent vari-
ables are the logarithm of a firms’ sales in columns (1) - (3), and the logarithm of a firms’ sales per employee in
columns (4) - (6). The key independent variable is the interaction term between a firm’s labor exposure to climate
change LECC and Temperature Shocks, a dummy indicating severe relative temperature shocks in a year. Controls
include LECC, Temperature Shocks and labor skill. The sample period is from 2002 to 2019. The industry in
industry and industry-by-year fixed effects is at the two-digit NAICS level. Numbers in parentheses are standard
errors. Standard errors are clustered at the four-digit NAICS and the county level. ***, **, and * indicate p-values
of 1%, 5%, and 10%, respectively.

(1) (2) (3) (4) (5) (6)

Log(Sales) Log(Sales/EMP)

LECC * Temperature Shocks -0.002 -0.017*** -0.018*** -0.002*** -0.011*** -0.011***
(0.001) (0.005) (0.004) (0.001) (0.003) (0.003)

Observations 2,045,616 453,864 453,864 2,045,616 453,864 453,864
Controls Yes Yes Yes Yes Yes Yes
Firm*Year FE Yes No No Yes No No
County FE Yes No No Yes No No
Firm*County*Year FE No Yes Yes No Yes Yes
Industry FE Yes Yes No Yes Yes No
Industry*Year FE No No Yes No No Yes
Adjusted R-squared 0.565 0.370 0.387 0.827 0.593 0.609
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Table 6. Temperature Shocks and Firm Capital-labor Ratio

This table presents the effects of temperature shocks on firms’ capital-labor ratios. Results in columns (1) -
(3) use the full-sample data. Results in columns (4), "High Projection", are based on firms operating in counties
with large projected temperature increases. Results in columns (5), "Low Projection", are based on firms operating
in counties with mild projected temperature increases. The dependent variable is the logarithm of a firm’s
property, plant, and equipment (PPENT) divided by its number of employees (EMP). The key independent
variables are the interaction term between a firm’s labor exposure to climate change (LECC) and Temperature
Shocks, a dummy indicating severe relative temperature shocks in a year, and its lagged terms. Controls include
LECC and its lagged terms, Temperature Shocks and its lagged terms, labor skill, the logarithm of total assets,
leverage, and a dummy indicating that a firm pays dividends. The firm-level controls are lagged by two years.
The sample period is from 2002 to 2019. The industry in industry-by-year fixed effects is at the two-digit NAICS
level. Numbers in parentheses are standard errors. Standard errors are clustered at the four-digit NAICS level.
***, **, and * indicate p-values of 1%, 5%, and 10%, respectively.

(1) (2) (3) (4) (5)

Log(PPENT/EMP)

Full Sample High Projection Low Projection

LECC * Temperature Shocks 0.010*** 0.009*** 0.005* 0.006** 0.003
(0.003) (0.003) (0.003) (0.003) (0.006)

LECC (T-1) * Temperature Shocks (T-1) 0.009*** 0.009*** 0.005** 0.005* 0.003
(0.002) (0.002) (0.002) (0.003) (0.006)

LECC (T-2) * Temperature Shocks (T-2) 0.011*** 0.009*** 0.005* 0.006* 0.008
(0.002) (0.002) (0.003) (0.003) (0.006)

Observations 34,637 34,577 34,559 17,594 16,576
Controls Yes Yes Yes Yes Yes
Year FE Yes No No No No
Firm FE Yes Yes Yes Yes Yes
State*Year FE No Yes Yes Yes Yes
Industry*Year FE No No Yes Yes Yes
Adjusted R-squared 0.928 0.929 0.930 0.955 0.896
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Table 7. The HIPS and Firm Capital-labor Ratio

This table presents the effects of the HIPS on firms’ capital-labor ratios. The dependent variable is the
logarithm of a firm’s property, plant, and equipment (PPENT) divided by its number of employees (EMP). The
key independent variable is the interaction between a dummy indicating a firm’s high labor exposure to climate
change in 2002, High LECC, and a dummy indicating the adoption of the HIPS, Prevention, which equals one
for the period 2005 - 2007 and zero for the period 2002 - 2004. Both High LECC and Prevention are absorbed by
fixed effects. Controls include labor skill, the logarithm of total assets, leverage, and a dummy indicating that a
firm pays dividends. All controls are lagged by one year. The sample period is from 2002 to 2007. Numbers in
parentheses are standard errors. Standard errors are clustered at the four-digit NAICS level. ***, **, and * indicate
p-values of 1%, 5%, and 10%, respectively.

(1) (2) (3) (4) (5)

Log(PPENT/EMP)

High LECC * Prevention 0.147** 0.132** 0.132*** 0.141*** 0.171**
(0.056) (0.057) (0.044) (0.053) (0.082)

Size 0.313*** 0.307*** 0.307*** 0.311***
(0.027) (0.028) (0.029) (0.030)

Leverage -0.089 -0.096 -0.100 -0.117
(0.091) (0.091) (0.097) (0.106)

Dividend Payer 0.050* 0.073** 0.078** 0.082**
(0.029) (0.032) (0.034) (0.035)

Observations 2,522 2,470 2,450 2,431 2,360
Firm FE Yes Yes Yes Yes Yes
Year FE Yes Yes No No No
County*Year FE No No Yes Yes Yes
NAICS 2*Year FE No No No Yes No
NAICS 3*Year FE No No No No Yes
Adjusted R-squared 0.883 0.898 0.897 0.895 0.891

56



Table 8. Dynamic Treatment Effects of the HIPS

This table presents the dynamic treatment effects of the HIPS on firms’ capital-labor ratios. The depen-
dent variable is the logarithm of a firm’s property, plant, and equipment (PPENT) divided by its number of
employees (EMP). The key independent variables are the interaction terms between a dummy indicating a firm’s
high labor exposure to climate change in 2002, High LECC, and the year indicators. The year indicator for 2004 is
omitted as 2004 is the base year. Controls include labor skill, the logarithm of total assets, leverage, and a dummy
indicating that a firm pays dividends. All controls are lagged by one year. The sample period is from 2002 to
2007. The industry in industry-by-year fixed effects is at the two-digit NAICS level. Numbers in parentheses are
standard errors. Standard errors are clustered at the four-digit NAICS level. ***, **, and * indicate p-values of 1%,
5%, and 10%, respectively.

(1) (2) (3) (4) (5)

Log(PPENT/EMP)

High LECC * Year 2002 -0.056 -0.019 -0.003 -0.028 -0.030
(0.077) (0.072) (0.060) (0.064) (0.070)

High LECC * Year 2003 -0.008 -0.016 -0.024 -0.033 -0.074
(0.062) (0.062) (0.050) (0.051) (0.057)

High LECC * Year 2005 0.096** 0.101** 0.114** 0.113** 0.097**
(0.040) (0.041) (0.048) (0.043) (0.047)

High LECC * Year 2006 0.128*** 0.118** 0.127** 0.123** 0.111*
(0.046) (0.051) (0.059) (0.054) (0.060)

High LECC * Year 2007 0.159*** 0.144*** 0.130** 0.147** 0.118
(0.051) (0.050) (0.059) (0.070) (0.074)

Observations 2,522 2,470 2,450 2,451 2,431
Controls No Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes Yes
Year FE Yes Yes No No No
County*Year FE No No Yes No Yes
Industry*Year FE No No No Yes Yes
Adjusted R-squared 0.883 0.898 0.897 0.896 0.895
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Table 9. Innovation and Automation

This table presents the effects of temperature shocks and the HIPS on firms’ innovation activities, respec-
tively. Columns (1) - (6) present results on temperature shocks and columns (7) - (12) present results on the HIPS.
The dependent variable in columns (1) and (7) is a firm’s R&D expenses divided by its lagged total assets. The
dependent variable in columns (2) and (8) is the logarithm of one plus the number of patents a firm files in a year.
The dependent variable in columns (3) and (9) is the logarithm of one plus the number of forward citations of a
firm’s filed patents. The dependent variable in columns (4) and (10) is the logarithm of one plus the estimated
value of a firm’s filed patents. The dependent variable in columns (5) and (11) is a dummy indicating that a firm
has at least one automation patent filed. The dependent variable in columns (6) and (12) is a dummy indicating
that a firm has at least one process claim in patents filed. The key independent variable in columns (1) - (6) are
the interaction terms between a firm’s labor exposure to climate change (LECC) and Temperature Shocks, a dummy
indicating severe relative temperature shocks in a year. The key independent variable in columns (7) - (12) is the
interaction between a dummy indicating a firm’s high labor exposure to climate change in 2002, High LECC, and
a dummy representing the adoption of the HIPS, Prevention, which equals one for the period 2005 - 2007 and zero
for the period 2002 - 2004. Controls in columns (1) - (6) include LECC and its lagged terms, Temperature Shocks
and its lagged terms, labor skill, the logarithm of total assets, leverage, and a dummy indicating that a firm pays
dividends. The firm-level controls are lagged by two years. Controls in columns (7) - (12) include labor skill, the
logarithm of total assets, leverage, and a dummy indicating that a firm pays dividends. The firm-level controls
are lagged by one year. The sample period is from 2002 to 2014 for the test on automation patents in column (5)
and is from 2002 to 2019 for other tests in columns (1) - (6). The sample period in columns (7) - (12) is from 2002
to 2007. The industry in industry-by-year fixed effects is at the two-digit NAICS level. Numbers in parentheses
are standard errors. Standard errors are clustered at the four-digit NAICS level. ***, **, and * indicate p-values of
1%, 5%, and 10%, respectively.

Temperature Shocks (1) (2) (3) (4) (5) (6)

R&D/Lag(AT) Log(1+No. Patents) Log(1+No. Citations) Log(1+Value) Automation Process Innovation

LECC * Temperature Shocks 0.0002 -0.0023 -0.0008 -0.0053 0.0020 -0.0012
(0.0001) (0.0020) (0.0010) (0.0033) (0.0015) (0.0013)

LECC (T-1) * Temperature Shocks (T-1) 0.0001 0.0050** 0.0025** 0.0033 0.0039*** 0.0016
(0.0002) (0.0021) (0.0011) (0.0040) (0.0014) (0.0012)

LECC (T-2) * Temperature Shocks (T-2) 0.0003** 0.0036 0.0016 0.0008 0.0022 0.0010
(0.0001) (0.0025) (0.0011) (0.0041) (0.0015) (0.0013)

Observations 34,664 34,664 34,664 34,664 25,799 34,095
Controls Yes Yes Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes Yes Yes
Industry*Year FE Yes Yes Yes Yes Yes Yes
Adjusted R-squared 0.875 0.891 0.855 0.893 0.670 0.693

The HIPS in California (7) (8) (9) (10) (11) (12)

R&D/Lag(AT) Log(1+No. Patents) Log(1+No. Citations) Log(1+Value) Automation Process Innovation

High LECC * Prevention 0.021** 0.160*** 0.082*** 0.258*** 0.037* 0.052**
(0.010) (0.031) (0.016) (0.056) (0.019) (0.023)

Observations 2,481 2,481 2,481 2,481 2,457 2,481
Controls Yes Yes Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes
Adjusted R-squared 0.831 0.909 0.859 0.930 0.700 0.665
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Table 10. Industry Dynamics

This table presents the effects of temperature shocks and the HIPS on industry dynamics, respectively.
Columns (1) - (4) present results on temperature shocks and columns (5) - (8) presents results on the HIPS. The
dependent variable in columns (1) - (2) & columns (5) - (6) is the annual change in the logarithm of the number of
jobs in each four-digit NAICS industry in a county. The dependent variable in columns (3) - (4) & columns (7) -
(8) is the annual change in the logarithm of average earnings in each four-digit NAICS industry in a county. The
key independent variable in columns (1) - (4) is the interaction terms between a firm’s labor exposure to climate
change (LECC) and Temperature Shocks, a dummy indicating severe relative temperature shocks in a year. The
key independent variable in columns (5) - (8) is the interaction between a dummy indicating a firm’s high labor
exposure to climate change in 2002, High LECC, and a dummy representing the adoption of the HIPS, Prevention,
which equals one for the period 2005 - 2007 and zero for the period 2002 - 2004. Controls in columns (1) - (4)
include LECC and its lagged terms, and Temperature Shocks and its lagged terms. Controls in columns (5) - (8)
include High LECC and Prevention. The sample period in columns (1) - (4) is from 2002 to 2019 and the sample
period in columns (5) - (8) is from 2002 to 2007. Numbers in parentheses are standard errors. Standard errors in
columns (1) - (4) are clustered at the four-digit NAICS and the county level. Standard errors in columns (5) - (8)
are clustered at the four-digit NAICS level. ***, **, and * indicate p-values of 1%, 5%, and 10%, respectively.

Temperature Shocks (1) (2) (3) (4)

Change in Log(No. Jobs) Change in Log(Earnings)

LECC * Temperature Shocks -0.0006*** -0.0006*** -0.0003** -0.0003**
(0.0002) (0.0002) (0.0001) (0.0001)

LECC (T-1) * Temperature Shocks (T-1) -0.0001 -0.0001 0.0003*** 0.0003***
(0.0002) (0.0002) (0.0001) (0.0001)

LECC (T-2) * Temperature Shocks (T-2) 0.0002 0.0002 -0.0001 -0.0001
(0.0001) (0.0001) (0.0001) (0.0001)

Observations 3,003,332 3,003,332 5,725,824 5,725,824
Controls Yes Yes Yes Yes
NAICS2 Industry*Year FE Yes Yes Yes Yes
State*Year FE Yes Yes Yes Yes
NAICS4 FE No Yes No Yes
Adjusted R-squared 0.022 0.028 0.007 0.007

The HIPS in California (5) (6) (7) (8)

Change in Log(No. Jobs) Change in Log(Earnings)

High LECC * Prevention -0.023*** -0.022*** -0.016*** -0.016***
(0.008) (0.008) (0.006) (0.006)

Observations 44,854 44,854 60,631 60,631
Controls Yes Yes Yes Yes
NAICS2 Industry*Year FE Yes Yes Yes Yes
County*Year FE Yes Yes Yes Yes
NAICS4 FE No Yes No Yes
Adjusted R-squared 0.020 0.036 0.007 0.006
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